

AIK-03-0083

April 25, 2003

Project Number HK 4087

via U.S. Mail

Commander
Department of the Navy
SOUTHDIV NAVFACENGCOM
ATTN: Byas Glover (Code ES24)
P.O. Box 190010

North Charleston, South Carolina 29419-9010

Reference: CLEAN Contract No. N62467-94-D-0888

Contract Task Order No. 0207

Subject: AS/SVE Treatability Study Evaluation Report for Boca Chica Flying Club

June 2002 to January 2003, Rev. 0, Naval Air Station, Key West, Florida

Dear Mr. Glover:

TtNUS is pleased to submit the enclosed PDF file for the AS/SVE Treatability Study Evaluation Report for Boca Chica Flying Club, June 2002 to January 2003, Rev. 0, Naval Air Station, Key West, Florida. At your request, a hard copy of this final report is being distributed to the Florida Department of Environmental Protection (FDEP) for their review and comment or concurrence. I am planning on receiving comments or concurrence on this document from FDEP within the next 30 days.

Please call me at (803) 649-7963, extension 345, if you have any questions regarding the enclosed CD.

Sincerely,

C. M. Bryan Project Manager

CMB:spc

Enclosure

c: Ms. Debbie Wroblewski (Cover Letter Only)

Mr. R. Courtright, NAS Key West (CD/hard copy)

Ms. T. Vaught, FDEP (hard copy)

Mr. M. Perry/File File 4087-7.3.2

AS/SVE Treatability Study Evaluation Report

for

Boca Chica Flying Club June 2002 to January 2003

Naval Air Station Key West, Florida

Southern Division Naval Facilities Engineering Command

Contract Number N62467-94-D-0888
Contract Task Order 0207

AS/SVE TREATABILITY STUDY EVALUATION REPORT FOR BOCA CHICA FLYING CLUB JUNE 2002 TO JANUARY 2003

NAVAL AIR STATION KEY WEST, FLORIDA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Tetra Tech NUS, Inc.
661 Anderson Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0207

APRIL 2003

PREPARED UNDER THE SUPERVISION OF:

APPROVED FOR SUBMITTAL BY:

CHUCK BRYAN
TASK ORDER MANAGER
TETRA TECH NUS, INC.
AIKEN, SOUTH CAROLINA

DEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC.

PITTSBURGH, PENNSYLVANIA

TABLE OF CONTENTS

SEC ¹	CTION	<u>PAGE</u>
ACR	RONYMS/ABBREVIATIONS	VI
1.0	TREATABILITY STUDY REPORT	1-1
	1.1 SITE HISTORY OVERVIEW	
	1.1.1 History of Assessment Activities	1-1
	1.2 MONITORING OBJECTIVES	
	1.3 SYSTEM DESCRIPTION	
	1.4 AIR MONITORING	
	1.5 GROUNDWATER MONITORING	
	1.6 AS/SVE SYSTEM OPERATIONS	1-5
	1.7 CONCLUSIONS AND RECOMMENDATIONS	
REFE	ERENCES	R-1
<u>APPI</u>	PENDICES PENDICES	
	A Validation Reports	
	B Water Sampling Logs	B-1
	TABLES	
<u>NUM</u>	MBER .	<u>PAGE</u>
1-1 1-2 1-3 1-4 1-5	VES Analytical and Performance Summary	
	FIGURES	
<u>NUM</u>	MBER	PAGE
1-1	Site Map and System Layout	1_12
1-2	Elevation Map September 17, 2002	
1-3	Elevation Map January 31, 2003	
1-4	Analytical Results	

ACRONYMS/ABBREVIATIONS

ABB Environmental Services, Inc.

AS Air Sparging

AST Aboveground storage tank

ASTM American Society for Testing and Materials

AS/SVE Air Sparging/Soil Vapor Extraction

AVGAS Aviation Gasoline

BEI Bechtel Environmental, Inc.

BTEX Benzene, toluene, ethylbenzene, and total xylenes

CAR Contamination Assessment Report

cfm Cubic feet per minute

CLEAN Comprehensive Long-Term Environmental Action Navy

CTO Contract Task Order

EPA United States Environmental Protection Agency

FC Flying Club

FDEP Florida Department of Environmental Protection

GCTL Groundwater cleanup target level

KAG Kerosene Analytical Group

µg/L Micrograms per liter
MW Monitoring well
NAS Naval Air Station

OVA Organic Vapor Analyzer
ppbv Parts per billion volume

ppm Parts per million

PVC Polyvinyl chloride

RAP Remedial Action Plan

TOC Top of Casing

TRPH Total Recoverable Petroleum Hydrocarbons

TtNUS Tetra Tech NUS, Inc.

UST Underground storage tank
VES Vapor Extraction System
VEW Vapor extraction well

VOA Volatile Organic Aromatic
VOC Volatile Organic Compound

1.0 TREATABILITY STUDY REPORT

Tetra Tech NUS, Inc. (TtNUS) is pleased to submit the Air Sparging/Soil Vapor Extraction (AS/SVE) Treatability Study Evaluation Report. This report has been prepared for the United States Navy Southern Division Naval Facilities Engineering Command under Contract Task Order (CTO) 0207, under Comprehensive Long-Term Environmental Action Navy (CLEAN) Contract Number N62467-94-D-0888. This report presents operation and monitoring results from June 2002 through January 2003.

1.1 SITE HISTORY OVERVIEW

The former Flying Club (FC) area is located at Naval Air Station (NAS) Key West along the northwest boundary of Taxiway H of Boca Chica Field, near Buildings A-133, A-126, A-127, and A-128 (Figure 1-1). The former FC area includes a former motor pool refueling point that used underground storage tanks (USTs) to store and dispense gasoline. An aviation gasoline (AVGAS) aboveground storage tank (AST) area was located approximately 50 feet south of the former motor pool refueling area. The area is currently used as an electrical repair and maintenance facility (Building A-126) and a transformer storage area (Building A-133).

1.1.1 <u>History of Assessment Activities</u>

The AS/SVE system was installed to address subsurface soil and groundwater contaminated with volatile organic compounds (VOCs).

Soils in the site area were field-screened with an Organic Vapor Analyzer (OVA) to assess for the presence of contaminated soil during the Contamination Assessment Report (CAR) conducted in April 1994. A total of 71 soil borings were advanced, each to 6 feet deep. Screening results indicated the presence of excessively contaminated soils [greater than 50 parts per million (ppm)] in four areas. The largest of these areas measured approximately 70 feet long by 40 feet wide and was located near Building A131. Smaller areas were noted near the former AVGAS dispenser, north of Building A-131 near monitoring well (MW)-8, and north of Building A-131 near MW-17. OVA readings greater than 500 ppm were observed in 20 samples.

Groundwater samples were collected from all existing wells and analyzed for Kerosene Analytical Group (KAG) parameters during the CAR that was conducted in April 1994. The applicable Class G-III aquifer cleanup goals were exceeded for the compounds of benzene and total volatile organic aromatics (VOAs). Two areas of VOAs were identified, one near the former AVGAS ASTs and dispenser and the other near the former motor pool USTs. The highest total VOA concentration found, 1,300 micrograms per liter (µg/L), was at FC-MW-04, near the former AVGAS dispenser. Total VOA concentrations in samples from

FC-MW-06 and FC-MW-20, near the former motor pool gasoline USTs, were 305 μ g/L and 156 μ g/L, respectively.

The monitoring wells were resampled in August 1996, as part of the Remedial Action Plan (RAP) preparation. The 1996 data indicated significant changes in the degree and extent of contamination found during the CAR. Total VOAs in FC-MW-4 were measured at 133 μ g/L, putting the area of the former AVGAS dispenser within the Class III guidelines. The total VOA concentrations for FC-MW-06 and FC-MW-20 were 1,470 μ g/L and 35 μ g/L, respectively. Based on the 1996 sampling results, the RAP recommended the excavation of contaminated soil (an estimated amount of 2,126 cubic yards). The largest area recommended for excavation was in the vicinity of the former motor pool USTs near Building A-133 [ABB Environmental Services, Inc. (ABB), 1997].

In 1998, excavations of contaminated soil took place, based on recommendations in the RAP. Approximately 983 cubic yards of soil were excavated from the FC site. The ion collide process was used to treat a portion of the contaminated soil. The excavated areas at the FC site were then backfilled [Bechtel Environmental, Inc. (BEI), 1999].

A quarterly groundwater monitoring plan was implemented in August 1999. The most recent sampling results are dated April 11, 2001. Total VOA concentrations for FC-MW-06 and FC-MW-20 were 51 μ g/L and 11 μ g/L, respectively. These VOA concentrations are below the applicable cleanup guidelines. However, naphthalene and total recoverable petroleum hydrocarbons (TRPH) concentrations increased in FC-MW-20. Due to the lack of substantial decreases in the concentrations of some contaminants following several quarters of groundwater monitoring, TtNUS recommended a treatability study be performed to investigate the efficacy of enhancing the degradation of contaminants under aerobic conditions.

1.2 MONITORING OBJECTIVES

In May 2002, an AS/SVE Treatability Study was initiated at the site to remediate residual hydrocarbon contaminants in the soil and groundwater (TtNUS, 2000). The study was conducted in two phases:

- Phase I involved a short-term test to evaluate the effectiveness of the system.
- Phase II involved a long-term evaluation of the Treatability Study and involves monitoring of the system's effectiveness for a period of six months.

The objective of Phase II was to remediate groundwater in the vicinity of FC-MW-06 and former FC-MW-20 (replaced by FC-MW-22 due to damage) to Florida Department of Environmental Protection (FDEP) groundwater cleanup target levels (GCTLs).

1.3 SYSTEM DESCRIPTION

The remediation system design incorporates soil vapor extraction with air sparging (AS) to remove hydrocarbon contaminants from the soil and groundwater. AS is achieved by a Roots URAI 33, 7.5-horsepower injection blower. Sixteen 2-inch-diameter AS wells were installed in a 20-foot grid pattern in the vicinity of monitoring wells FC-MW-06 and FC-MW-22. The screens were installed at an interval of 18 to 20 feet, to ensure a depth of approximately 12 feet below the top of water table. Air is transferred between the blower and injection wells by 2-inch-diameter above ground schedule 40 polyvinyl chloride (PVC) pipes. These pipes are connected to the blowers with 2-inch hoses equipped with quick-disconnect camlocks.

Vapor extraction for the soil remediation portion of the system is provided by a Rotron EN 707 5-horsepower blower capable of 70 inches of water at 120 cubic feet per minute (cfm). The vapor extraction wells (VEWs) were installed in close proximity to FCMW-06 and FC-MW-22. The screened interval was placed above and below the water table, which occurs between 5 and 6 feet. This allows for extracting vapors from the soil in the vadose zone. The VEWs were also attached to the blower via 2-inch PVC pipe. Prior to entering the blower, the moisture in the vapor stream is treated by a Rotron MS 500 moisture separator. The condensate is automatically transferred to a knock-out tank with a Zoellar 1/3-horsepower motor. The vapors then pass through a series of carbon treatment drums before being discharged into the atmosphere. A site map showing the system layout is presented in Figure 1-1.

1.4 AIR MONITORING

To monitor the effectiveness of the system, air/vapor samples were collected from the Vapor Extraction System (VES). The system was started on June 7, 2002 and a sample was collected to verify baseline results. Following startup, TtNUS personnel visited the site each month to collect air samples. Samples were collected from the sampling ports located before (influent) and after (effluent) the carbon canisters to evaluate the effectiveness of the carbon treatment. All sampling activities were conducted in accordance with the TtNUS Florida Regional Quality Assurance Program Manual (TtNUS, 2002a).

Following collection, the air samples were shipped via overnight transport to Air Toxics, Ltd. They were analyzed for VOCs, using United States Environmental Protection Agency (EPA) Method TO-14, and carbon dioxide and oxygen using American Society for Testing and Materials (ASTM) Method D-1946. The analytical results of the monthly air sampling are summarized in Table 1-1. Copies of the validation reports for the second quarter of monthly air monitoring are provided in Appendix A. The first quarter validation reports are contained in the AS/SVE Treatability Study Quarterly Report (TtNUS, 2002b).

Analytical results indicate that benzene, toluene, ethylbenzene, and total xylenes (BTEX) concentrations were detected in effluent air samples collected during June 2002, August 2002, and December 2002

events. Total BTEX effluent concentrations were 27.5, 3.10, and 1.3 parts per billion volume (ppbv) for the samples collected in June, August, and December 2002. Effluent concentrations were below detection limits in the July, September, October, and November 2002, and January 2003. Total BTEX concentrations for influent samples collected in June, July, and August 2002, were 4,670 ppbv, 9.7 ppbv, and 2.2 ppbv, respectively. Influent concentrations were not detected during any other sampling event. The total emissions for the quarter did not exceed the 13.7 pounds-per-day FDEP limit. Mass vapor emissions calculations for the highest effluent concentrations are presented in Table 1-2.

1.5 GROUNDWATER MONITORING

On September 17, 2002 and January 31, 2003, TtNUS personnel collected groundwater samples from three monitoring wells: FC-MW-05, FC-MW-06 and FC-MW-22. All sample activities were conducted in accordance with the TtNUS Florida Regional Quality Assurance Program Manual (TtNUS, 2002).

Immediately prior to the collection of the groundwater samples, water levels were recorded from each site monitoring well. The water level data was used to determine purge volumes. In addition, depth-to-water measurements, along with top-of-casing elevations, were used to calculate groundwater elevations. Based on these elevations, the groundwater was flowing primarily to the south-southeast at the time of the September sampling and to the southeast in January 2003. Figure 1-2 depicts the groundwater elevations recorded on September 17, 2002. Figure 1-3 depicts the groundwater elevations recorded on January 31, 2003. Depth-to-water measurements, top-of-casing elevations, and groundwater elevation data are provided in Table 1-3.

All monitoring wells were purged prior to collection of the groundwater samples. Purging and sampling were performed with a peristaltic pump using the low-flow quiescent method. Water sampling logs for January 2003, which detail the purge process, are provided in Appendix B. September 2002 groundwater sampling logs are contained in the AS/SVE Treatability Study Quarterly Report (TtNUS, 2002b).

Following collection of the groundwater samples, the sample bottles were packed on ice and shipped via overnight transport to Katahdin Analytical Services in Westbrook, Maine. The groundwater samples were analyzed for compounds in the KAG. The analytical results are summarized in Tables 1-4 and 1-5 and presented on Figure 1-4.

During the first quarter event in September 2002, benzene, naphthalene, lead, and TRPH concentrations were detected in monitoring well FC-MW-06 at concentrations of 0.4 μ g/L, 0.1 μ g/L, 36.8 μ g/L, and 150 μ g/L, respectively. Lead was the only KAG constituent to exceed the GCTL in this monitoring well.

Ethylbenzene, total xylenes, naphthalene, and TRPH concentrations were detected in FC-MW-22 at concentrations of 95 μ g/L, 12 μ g/L, 360 μ g/L, and 4,300 μ g/L, respectively, during the first quarter monitoring event. Ethylbenzene and naphthalene concentrations were above the GCTL of 20 μ g/L

recommended for the site. In addition to the above constituents, 1-methylnaphthalene and 2-methylnaphthalene were also detected above GCTLs in monitoring well FC-MW-22 during the first quarter event.

Constituents of the KAG were not detected in the sample collected from FC-MW-05.

During the second quarterly monitoring event conducted in January 2003, lead again exceeded the GCTL at a concentration of $40.2~\mu g/L$, but in monitoring well FC-MW-22. Ethylbenzene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, and TRPH also exceed their GCTLs at concentrations of 88, 46, 180, 630, and 8,200 $\mu g/L$, respectively, in monitoring well FC-MW-22. Contaminants did not exceed GCTLs in monitoring wells FC-MW-05 or FC-MW-06. However, VOCs were detected in all monitoring wells sampled at the site.

Figure 1-4 presents first and second quarter groundwater monitoring results compared to sample results from April 2001. Monitoring well FC-MW-05 was not sampled prior to implementation of the AS/SVE system. BTEX, TRPH, and lead concentrations in monitoring well FC-MW-22 have increased compared to the April 2001 event. However, BTEX, TRPH, naphthalene, and lead concentrations in FC-MW-06 have decreased since the April 2001 event and are currently below GCTLs.

1.6 AS/SVE SYSTEM OPERATIONS

The remedial system has operated effectively from June 2002 through January 2003. TtNUS performed routine operation and maintenance during monthly site visits. The system operated as designed during the eight-month period, with the exception of a one week period when the system was down for equipment repair. The trailer containing the AS/SVE system was removed in February 2003 after completion of the treatability study.

1.7 CONCLUSIONS AND RECOMMENDATIONS

Ethylbenzene, lead, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected in the groundwater above GCTLs during both quarterly events. TRPH was also detected above its GCTL during the second quarter event.

Overall KAG contamination in the previously defined source area monitoring well (FC-MW-06) has decreased since implementation of the AS/SVE system. However, FC-MW-22 has shown an increase in KAG constituents, suggesting that contamination at the site has mobilized to the east toward Taxiway H, as shown in Figure 1-4.

TtNUS recommends that one year of quarterly monitoring at the Flying Club be performed to further assess groundwater contamination, potential increases in BTEX concentrations (rebound), and possible

contaminant plume movement. Additional remediation may be considered for this site if contaminant concentrations have not decreased to below GCTLs.

TABLE 1-1

VES ANALYTICAL AND PERFORMANCE SUMMARY AS/SVE TREATABILITY STUDY QUARTERLY REPORT BOCA CHICA FLYING CLUB, BUILDING A-127 NAVAL AIR STATION KEY WEST, FLORIDA

Location	Sample ID	Date	Benzene	Toluene	Ethyl Benzene	Total Xylenes	Total BTEX	Oxygen (%)	Carbon Dioxide (%)
EFFLUENT	BCFC-VEFF-01	6/7/2002		7.4	3.7	16.4	27.5	20.0	0.04
INFLUENT	BCFC-VINF-01	6/7/2002			4100.0	570.0	4670.0	20.0	0.170
EFFLUENT	BCFC-VEFF-0702	7/11/2002					0.0	22.0	0.07
INFLUENT	BCFC-VINF-0702	7/11/2002			9.7		9.7	22.0	0.065
EFFLUENT	BCFC-VEFF-0802	8/20/2002		3.1			3.1	20.0	0.039
INFLUENT	BCFC-VINF-0802	8/20/2002	2.2				2.2	20.0	0.068
EFFLUENT	BCFC-VEFF-0902	9/17/2002					0.0	21.0	0.094
INFLUENT	BCFC-VINF-0902	9/17/2002					0.0	20.0	0.180
EFFLUENT	BCFC-VEFF-1002	10/25/2002					0.0	21.0	0.066
INFLUENT	BCFC-VINF-1002	10/25/2002					0.0	21.0	0.076
EFFLUENT	BCFC-VEFF-1102	11/21/2002					0.0	16.0	ND
INFLUENT	BCFC-VINF-1102	11/22/2002					0.0	18.0	ND
EFFLUENT	BCFC-VEFF-1202	12/16/2002		1.3			1.3	18.0	0.04
INFLUENT	BCFC-VINF-1202	12/16/2002			1.1		1.1	19.0	0.054
EFFLUENT	BCFC-VEFF-0103	1/30/2003					0.0	22.0	0.045

All results are reported in parts per billion volume (ppbv) unless noted. ${\rm ND}-{\rm Not}$ Detected

TABLE 1-2

MASS VAPOR EMISSIONS CALCULATIONS (JUNE 7, 2002) AS/SVE TREATABILITY STUDY QUARTERLY REPORT **BOCA CHICA FLYING CLUB SITE, BUILDING A-127 NAVAL AIR STATION KEY WEST, FLORIDA**

Parameter	Effluent Result (μg/m³)*
Benzene	0
Toluene	7
Ethylbenzene	4
Total Xylenes	16
MTBE	0
TRPH	0
μg/m³ of total (detectable) VOCs>>>	27.0
μg/ft ³ of total (detectable) VOCs>>>	0.76
ft ³ /min. (cfm) out of the carbon >>>	52
μg/min out of the carbon >>>	40
minutes per day (24 hrs.)	1440
μg/day >>>	5.72E+04
pounds/day	1.26E-04
pounds/month based on 30 days>>>	3.7E-03

^{*} Only detectable results are used in calculations

μg m³ ft³ micrograms = cubic meters = cubic feet

= cubic feet per minute cfm MTBE = methyl-tertiary butyl ether
TRPH = total recoverable petroleum hydrocarbons

TABLE 1-3

TOTAL DEPTHS, TOP OF CASING ELEVATIONS, AND WATER TABLE ELEVATIONS AS/SVE TREATABILITY STUDY QUARTERLY REPORT BOCA CHICA FLYING CLUB SITE, BUILDING A-127 NAVAL AIR STATION KEY WEST, FLORIDA

Well ID	Date	Total Depth (ft)	Top of Casing Elevation (ft)	Depth- to-water (ft below TOC)	Groundwater Elevation (ft)
FC-MW-05	9/17/2002	11.8	5.78	4.03	1.75
FC-MW-06	9/17/2002	14.1	4.86	3.04	1.82
FC-MW-22	9/17/2002	15	5.07	3.33	1.74
FC-MW-05	1/31/2003	11.62	5.78	4.65	1.13
FC-MW-06	1/31/2003	12.6	4.86	3.70	1.16
FC-MW-22	1/31/2003	14.67	5.07	4.03	1.04

Top of Casing (TOC) Elevations were surveyed by Donaldson, Garrett, and Associates in September 2002. Vertical datum is National Geodetic Vertical Datum of 1929 (NGVD 29).

TABLE 1-4

FIRST QUARTER GROUNDWATER ANALYTICAL RESULTS AS/SVE TREATABILITY STUDY QUARTERLY REPORT **BOCA CHICA FLYING CLUB SITE, BUILDING A-127 NAVAL AIR STATION KEY WEST, FLORIDA**

		RESULT		GCTL ^(b)	
LOCATION	PARAMETER	(μ g/L)	QUAL. ^(a)	(μ g/L)	
LEAD					
FC-MW-06	LEAD	36.8		15	
VOLATILE ORGA	ANIC COMPOUNDS				
FC-MW-06	BENZENE	0.4	J	1	
FC-MW-22	ETHYLBENZENE	95		30	
FC-MW-22	TOTAL XYLENES	12		20	
POLYNUCLEAR	AROMATIC HYDROCARBONS				
FC-MW-22	1-METHYLNAPHTHALENE	47		20	
FC-MW-22	2-METHYLNAPHTHALENE	100		20	
FC-MW-22	ACENAPHTHENE	0.1	J	20	
FC-MW-06	NAPHTHALENE	0.1	J	20	
FC-MW-22	NAPHTHALENE	360		20	
FC-MW-22	PHENANTHRENE	0.08	J	210	
TOTAL RECOVE	TOTAL RECOVERABLE PETROLEUM HYDROCARBONS				
FC-MW-06	TOTAL PETROLEUM HYDROCARBONS	150	J	5,000	
FC-MW-22	TOTAL PETROLEUM HYDROCARBONS	4,300		5,000	

Shading indicates a concentration in excess of the action level.
(a) Qualifier (Qual.) Codes:

⁽a)

J – The associated value is an estimated quantity.
Groundwater Cleanup Target Level (GCTL) as listed in F.A.C. 62-777 Table I. (b)

TABLE 1-5

SECOND QUARTER GROUNDWATER ANALYTICAL RESULTS AS/SVE TREATABILITY STUDY QUARTERLY REPORT **BOCA CHICA FLYING CLUB SITE, BUILDING A-127 NAVAL AIR STATION KEY WEST, FLORIDA**

LOCATION	PARAMETER	RESULT (μg/L)	QUAL. ^(a)	GCTL ^(b) (μg/L)
LEAD				
FC-MW-22	LEAD	40.2		15
VOLATILE ORGANI	C COMPOUNDS			
FC-MW-05	ETHYLBENZENE	1		
FC-MW-06	ETHYLBENZENE	1		30
FC-MW-22	ETHYLBENZENE	88		
FC-MW-05	TOLUENE	1		4
FC-MW-22	TOLUENE	4		4
FC-MW-05	TOTAL XYLENES	5		20
FC-MW-06	TOTAL XYLENES	5		20
FC-MW-22	TOTAL XYLENES	19		20
FC-MW-05	TRICHLOROETHENE	1	J	3
POLYNUCLEAR AR	OMATIC HYDROCARBONS			
FC-MW-22	1-METHYLNAPHTHALENE	46	J	20
FC-MW-22	2-METHYLNAPHTHALENE	180		20
FC-MW-22	NAPHTHALENE	630		20
TOTAL RECOVERA	BLE PETROLEUM HYDROCARBONS			
FC-MW-22	TOTAL PETROLEUM HYDROCARBONS	8,200		5,000

Shading indicates a concentration in excess of the action level.

 ⁽a) Qualifier (Qual.) Codes:

 J – The associated value is an estimated quantity.

 (b) Groundwater Cleanup Target Level (GCTL) as listed in F.A.C. 62-777 Table I.

REFERENCES

ABB (ABB Environmental Services, Inc.), 1997. Remedial Action Plan, Flying Club Site (UST Site 9), Naval Air Station, Key West, Florida, prepared for Southern Division Naval Facilities Engineering Command (SOUTHNAVFACENGCOM), Charleston, South Carolina, August.

BEI (Bechtel Environmental, Inc.), 1999. Project Completion Report for Delivery Order No. 0094, Flying Club Site, Petroleum Remediation at Naval Air Station, Key West, Florida, prepared for Department of the Navy, Southern Division, Naval Facilities Engineering Command, Oak Ridge, Tennessee, January.

FDEP (Florida Department of Environmental Protection), 2000. Re: Annual Groundwater Monitoring Report for Flying Club Site, Key West, Florida, August 9.

TtNUS (Tetra Tech NUS, Inc.), 2000. Annual Groundwater Monitoring Plan Report for Flying Club UST Site 9, Naval Air Station, Key West, Florida, prepared for Southern Division Naval Facilities Engineering Command (SOUTHNAVFACENGCOM), Charleston, South Carolina, July.

TtNUS (Tetra Tech NUS, Inc.), 2002a. Florida Regional Quality Assurance Program Manual. Tallahassee, Florida, October.

TtNUS (Tetra Tech NUS, Inc.), 2002b. AS/SVE Treatability Study Quarterly Report for Boca Chica Flying Club, July to September 2002, Naval Air Facility, Key West, Florida, prepared for Southern Division Naval Facilities Engineering Command (SOUTHNAVFACENGCOM), Aiken, South Carolina, December.

APPENDIX A LABORATORY REPORTS

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

C. BRYAN

DATE:

MARCH 17, 2003

FROM:

ETHAN G. LEE

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION - TAL METALS, TIN, AND

MISCELLANEOUS PARAMETERS

NAS KEY WEST - CTO 233

SAMPLE DELIVERY GROUP (SDG) - 2334

SAMPLES:

19/AQUEOUS/

0103-DUP-01 FC-MW-20R-0103 S1MW-7-0103 S1SW-3-0103 S9MW-14-0103 S9MW-22-0103	FC-MW-05-0103 I8MW8-1-0103 S1SW-1-0103 0103-DUP-06 S9MW-15-0103 S9MW-24-0103	FC-MW-06-0103 I8MW8-2-0103 S1SW-2-0103 S9MW-12-0103 S9MW-21-0103 S9MW-25-0103
S9MW-22-0103	S9MW-24-0103	S9MW-25-0103

S9MW-5-0103

Overview

The sample set for NAS Key West, CTO 233, SDG 2334, consists of nineteen (19) aqueous environmental samples. Two (2) field duplicate pairs (0103-DUP-01 / S1MW-7-0103; 0103-DUP-06 / S9MW-14-0103) are included in this SDG.

Samples 0103-DUP-01, I8MW8-1-0103, I8MW8-2-0103, S1MW-7-0103, S1SW-1-0103, S1SW-2-0103, and S1SW-3-0103 were analyzed for Target Analyte List (TAL) metals and tin. Samples FC-MW-05-0103, FC-MW-06-0103, and FC-MW-20R-0103 were analyzed for lead only. Samples 0103-DUP-06, S9MW-12-0103, S9MW-14-0103, S9MW-15-0103, S9MW-21-0103, S9MW-22-0103, S9MW-24-0103, S9MW-25-0103, and S9MW-5-0103 were analyzed for chloride, sulfate, sulfide, and total organic carbon (TOC). The samples were collected by Tetra Tech NUS January 31 to February 3, 2003, and analyzed by Katahdin Analytical Services. Tin and TAL metals analyses except mercury were conducted using method SW846 6010B. Mercury analyses were conducted using method SW846 7470A. Chloride and sulfate analyses were conducted using method EPA 300. Sulfide analyses were conducted using method EPA 376.1. TOC analyses were conducted using method EPA 415.1.

Metals analyses except mercury were conducted using Inductively Coupled Plasma (ICP) methodologies. Mercury analyses were conducted using Cold Vapor Atomic Absorption (CVAA) methodologies.

These data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
- Calibration Recoveries
 - Laboratory Blank Analyses
- Field Duplicate Results

TO: BRYAN, C. – PAGE 2 DATE: MARCH 17, 2003

- Detection Limits
- All quality control criteria were met for this parameter.

Laboratory Blank Analyses

The following contaminants were detected in the laboratory method/preparation blanks at the following maximum concentrations:

	<u>Maximum</u>	Action
<u>Analyte</u>	Concentration	Level
Aluminum ⁽¹⁾	22.85 ug/L	114.25 ug/L
Antimony ⁽²⁾	1.55 ug/L	7.75 ug/L
Calcium ⁽¹⁾	21.91 ug/L	109.55 ug/L
Calcium	20.04 ug/L	100.2 ug/L
Chromium ⁽²⁾	0.67 ug/L	3.35 ug/L
Iron	10.17 ug/L	50.85 ug/L
Lead ⁽²⁾	1.35 ug/L	6.75 ug/L
Mercury	0.10 ug/L	0.50 ug/L
Nickel ⁽¹⁾	10.56 ug/L	52.8 ug/L
Potassium	544.18 ug/L	2720.9 ug/L
Silver	2.70 ug/L	13.5 ug/L
Sodium ⁽¹⁾	82.43 ug/L	412.15 ug/L
Sodium ⁽²⁾	144.07 ug/L	720.35 ug/L
Zinc	1.41 ug/L	7.05 ug/L
Chloride ⁽³⁾	0.209 mg/L	1.045 mg/L
TOC ⁽³⁾	0.3636 mg/L	1.818 mg/L

Maximum concentration present in preparation blank from batchTB07ICW0.

An action level of 5X the maximum concentration was used to evaluate the sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the action level for aluminum, antimony, chromium, iron, lead, mercury, and zinc were qualified as nondetected (U) as a result of blank contamination. No validation action was required for the remaining analytes because all the results were either greater than the action level or they were nondetects.

Detection Limits

The result for sulfide in sample S9MW-5-0103 was below the laboratory's practical quantitation limit (PQL) but above the measured detection limit (MDL). The positive result reported for sulfide in this sample was qualified as estimated (J) due to uncertainty near the detection limit.

Notes

Dilutions were performed for all metal analytes except mercury in sample I8MW8-1-0103 due to the concentrations of magnesium and sodium above the linear range of the instrument and due to matrix interference for the remaining analytes.

Dilutions were performed for all metal analytes except mercury in samples 0103-DUP-01, I8MW8-2-0103, S1MW-7-0103, and S1SW-3-0103 due to the concentrations of calcium, magnesium, and sodium above the linear range of the instrument and due to matrix interference for the remaining analytes.

⁽²⁾ Maximum concentration present in preparation blank from batch TB05ICW1.

⁽³⁾ Maximum concentration present in aqueous preparation blank.

TO: BRYAN, C. – PAGE 3 DATE: MARCH 17, 2003

Dilutions were performed for all metal analytes except mercury in samples S1SW-1-0103 and S1SW-2-0103 due to the concentrations of calcium, magnesium, potassium, and sodium above the linear range of the instrument and due to matrix interference for the remaining analytes.

Executive Summary

Laboratory Performance: Several analytes were present in the laboratory method/preparation blanks.

Other Factors Affecting Data Quality: Sulfide in sample S9MW-5-0103 was qualified due to uncertainty near the detection limit.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", July 2002 and the NFESC document entitled "Navy IRCDQM" (September 1999).

The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS Ethan G. Lee

Environmental Scientist

Attachments:

Zolura Judlimur / Tetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A

QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = ECS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

L = Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

N01 = Internal Standard Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCD% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is less than sample activity

PROJ NO: 4202

COPPER

MAGNESIUM

MANGANESE

MERCURY

POTASSIUM

SELENIUM

SILVER

SODIUM

TIN

ZINC

THALLIUM

VANADIUM

NICKEL

IRON

LEAD

SDG: 2334 MEDIA: WATER DATA FRACTION: M

 nsample
 0103-DUP-01

 samp_date
 1/31/2003

 lab_id
 WT0233-007

 qc_type
 NM

 units
 UG/L

 Pct_Solids
 0

 DUP_OF:
 S1MW-7-0103

Val Parameter Result Qual ALUMINUM 96.3 ANTIMONY 3.6 ARSENIC 8.2 26.2 BARIUM BERYLLIUM 1.6 CADMIUM 13.0 CALCIUM 582000 CHROMIUM 2.2 1.7 COBALT

11.9

156

2.6

2.9

0.10

50.9

6.4

12.3

8.6

6.0

25.9

6.1

347000

8200000

1110000

nsample	FC-MW-05-0103
samp_date	1/31/2003
lab_id	WT0233-003
qc_type	NM
units	UG/L
Pct_Solids	0

Parameter

samp_date	1/31/2003
lab_id	WT0233-001
qc_type	NM
units	UG/L
Pct_Solids	0
DUP_OF:	
	· · · · · · · · · · · · · · · · · · ·

nsample

Val

Qual

U

Result

1.0

Qual

Code

Α

		DUP_OF:
	Qual Code	
U		LEAD
U		
T		
U		
U		
T		
J	Α	
J		
J		
J	Ā	
J		
T		
J		
J	Α	
J		
T		
J		
J		
T		
1		
J		
ار	_	

Parameter	Result	Val Qual	Qual Code
LEAD	3.6	U	Α

FC-MW-06-0103

SDG: 2334

MEDIA: WATER DATA

4202

FRACTION: M

Val

Qual

Qual

Code

nsample samp_date FC-MW-20R-0103

40.2

1/31/2003 WT0233-002

lab_id qc_type

NM

units Pct_Solids

DUP_OF:

LEAD

UG/L

0

Parameter Result

nsample samp_date lab_id qc_type units

Pct_Solids

DUP_OF:

NM UG/L 0

I8MW8-1-0103

1/31/2003

WT0233-004

samp_date lab_id qc_type units Pct_Solids

nsample

I8MW8-2-0103 1/31/2003 WT0233-005 NM

UG/L

0

Parameter	Result	Val Qual	Qual Code
ALUMINUM	96.3	U	
ANTIMONY	3.6	Ü	
ARSENIC	5.5		
BARIUM	110		
BERYLLIUM	1.6	U	-
CADMIUM	13.0	U	
CALCIUM	238000		
CHROMIUM	1.8	U	Α
COBALT	1.7	U	
COPPER	11.9	U	
IRON	23.7	U	
LEAD	2.6	Ü	
MAGNESIUM	1020000		
MANGANESE	20.2		
MERCURY	0.09	U	A
NICKEL	50.9	U	
POTASSIUM	355000		
SELENIUM	6.4	U	
SILVER	12.3	U	
SODIUM	8320000	* `	-
THALLIUM	8.6	U	
TIN	6.0	U	
VANADIUM	25.9	U	
ZINC	6.1	U	

Parameter	Result	Val Qual	Qual Code
ALUMINUM	124		
ANTIMONY	17.2	Ü	Α
ARSENIC	53.1		
BARIUM	90.7		
BERYLLIUM	1.6	U	
CADMIUM	13.0	Ü	
CALCIUM	514000		
CHROMIUM	7.1	U	A
COBALT	1.7	U	
COPPER	11.9	U	
IRON	159	U	Α
LEAD	2.6	U	
MAGNESIUM	1400000		
MANGANESE	2.9	U	
MERCURY	0.09	U	Α
NICKEL	50.9	Ü	
POTASSIUM	462000		
SELENIUM	6.4	U	
SILVER	12.3	U	
SODIUM	11200000		
THALLIUM	8.6	U	
TIN	6.0	U	
VANADIUM	30.2		
ZINC	11.7	U	Α

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: M

nsample samp_date S1MW-7-0103

1/31/2003

lab_id qc_type

WT0233-006 NM

units UG/L 0 Pct_Solids

DUP_OF:

nsample samp_date lab_id qc_type units

Pct_Solids

DUP_OF:

S1SW-1-0103 2/1/2003 WT0246-010 NM UG/L 0

nsample samp_date lab_id qc_type units Pct_Solids

DUP_OF:

S1SW-2-0103 2/1/2003 WT0246-011 NM UG/L 0

		Val	Qual
Parameter	Result	Qual	Code
ALUMINUM	96.3	U	
ANTIMONY	4.0	U	Α
ARSENIC	11.6		
BARIUM	23.4		
BERYLLIUM	1.6	U	
CADMIUM	13.0	U	
CALCIUM	576000	~~	
CHROMIUM	2.3	U	A
COBALT	1.7	U	
COPPER	11.9	U	
IRON	111	U	A
LEAD	2.6	U	
MAGNESIUM	1100000		
MANGANESE	2.9	U	
MERCURY	0.09	U	Α
NICKEL	50.9	U	
POTASSIUM	348000		
SELENIUM	6.4	U	
SILVER	12.3	U	
SODIUM	8410000		
THALLIUM	8.6	U	
TIN	6.0	U	
VANADIUM	25.9	Ü	
ZINC	11.0	U	A

Damanatan	D	Val	Qual
Parameter	Result	Qual	Code
ALUMINUM	132	U	Α
ANTIMONY	13.9		
ARSENIC	7.8	Ū	
BARIUM	123		
BERYLLIUM	0.96	U	
CADMIUM	7.8	U	
CALCIUM	1250000		
CHROMIUM	41.4		
COBALT	2.8	Ü	
COPPER	16.6		
IRON	31.2	U	Α
LEAD	4.4	Ü	-
MAGNESIUM	1540000		
MANGANESE	5.8	Ü	
MERCURY	0.83		
NICKEL	30.5	U	
POTASSIUM	679000		
SELENIUM	10.6	U	
SILVER	7.4	U	
SODIUM	15200000		
THALLIUM	14.3	U	
TIN	10.0	U	
VANADIUM	28.4		-
ZINC	7.1	U	A

····			
Parameter	Result	Val Qual	Qual Code
ALUMINUM	96.3	U	
ANTIMONY	3.6	U	
ARSENIC	4.7	U	
BARIUM-	17.3		
BERYLLIUM	1.6	U	
CADMIUM	13.0	U	
CALCIUM	559000		
CHROMIUM	1.3	U	
COBALT	1.7	U	
COPPER	11.9	U	
RON	183	U	A
_EAD	2.6	U	
MAGNESIUM	1670000		
MANGANESE	2.9	U	
MERCURY	0.08	U	А
VICKEL	50.9	U	
POTASSIUM	526000		
SELENIUM	6.4	U	
SILVER	12.3	U	
SODIUM	13400000		
THALLIUM	8.6	U	
ΓIN	6.0	U	-
/ANADIUM	25.9	U	
ZINC	51.2		

4202

SDG: 2334

MEDIA: WATER DATA FRACTION: M

nsample

S1SW-3-0103

samp_date

2/1/2003

lab_id

WT0246-012

qc_type

NM

units

UG/L

Pct_Solids

Parameter	Result	Val Qual	Qual Code
ALUMINUM	281	U	Α
ANTIMONY	5.4		** *
ARSENIC	4.7	U	
BARIUM	52.6		
BERYLLIUM	0.96	U	
CADMIUM	17.6		
CALCIUM	606000		
CHROMIUM	62.4	-	
COBALT	1.7	U	
COPPER	28.9		
IRON	412		
LEAD	320	•	
MAGNESIUM	1380000		
MANGANESE	127		
MERCURY	0.40	U	Α
NICKEL	30.5	U	
POTASSIUM	453000		
SELENIUM	6.4	U	
SILVER	7.4	U	
SODIUM	10300000		
THALLIUM	8.6	U	
TIN	6.0	U	
VANADIUM	15.5	Ü	
ZINC	120		
<u> </u>			

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: M

nsample samp_date 0103-DUP-06

2/1/2003 WT0246-8

lab_id qc_type

NM

Pct_Solids

DUP_OF:

S9MW-14-0103

nsample samp_date lab_id

qc_type

Pct_Solids

DUP_OF:

S9MW-12-0103

2/3/2003 WT0246-2

NM 0 samp_date
lab_id
qc_type
Pct_Solids

nsample

S9MW-14-0103

2/1/2003 WT0246-3

NM 0

Pct_Solids

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	760		
SULFATE	MG/L	180		
SULFIDE	MG/L	11		
TOTAL ORGANIC CARBON	MG/L	13		

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	33		
SULFATE	MG/L	20		
SULFIDE	MG/L	2		
TOTAL ORGANIC CARBON	MG/L	8.1		

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	810		
SULFATE	MG/L	170		
SULFIDE	MG/L	11		
TOTAL ORGANIC CARBON	MG/L	13		

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: M

nsample samp_date S9MW-15-0103

2/1/2003

lab_id qc_type WT0246-4

qc_type Pct_Solids NM 0

DUP_OF:

nsample samp_date

lab_id

S9MW-21-0103

2/2/2003 WT0246-5

qc_type NM
Pct_Solids 0

Pct_Solids DUP_OF:

nsample

lab_id

samp_date

S9MW-22-0103

2/2/2003 WT0246-13

NM

qc_type

Pct_Solids

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	130		
SULFATE	MG/L	20		
SULFIDE	MG/L	7.4		
TOTAL ORGANIC CARBON	MG/L	10		

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	3400		
SULFATE	MG/L	590		
SULFIDE	MG/L	5.9		
TOTAL ORGANIC CARBON	MG/L	10		

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	2500		
SULFATE	MG/L	510		
SULFIDE	MG/L	5.9		
TOTAL ORGANIC CARBON	MG/L	14		

4202

SDG: 2334 MEDIA: WATER DATA

FRACTION: M

nsample samp_date S9MW-24-0103

2/2/2003

0

lab_id WT0246-6 qc_type NM

Pct_Solids

DUP_OF:

nsample samp_date

lab_id
qc_type
Pct_Solids

DUP_OF:

S9MW-25-0103 2/2/2003 WT0246-7

NM 0

nsample samp_date

S9MW-5-0103 2/1/2003 WT0246-1

NM

0

lab_id qc_type

Pct_Solids

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	3900		
SULFATE	MG/L	470		
SULFIDE	MG/L	12		
TOTAL ORGANIC CARBON	MG/L	78		

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	2000		
SULFATE	MG/L	650		
SULFIDE	MG/L	5.9		
TOTAL ORGANIC CARBON	MG/L	15		

Parameter	units	Result	Val Qual	Qual Code
CHLORIDE	MG/L	34		
SULFATE	MG/L	10		
SULFIDE	MG/L	0.65	J	Р
TOTAL ORGANIC CARBON	MG/L	24		

APPENDIX B

RESULTS AS REPORTED BY THE LABORATORY

Lab Name: Katahdin Analytical Services

Client Field ID: 0103-DUP-01

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0233-007

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	96.25	U		P	5
7440-36-0	ANTIMONY	3.57	U		P	3
7440-38-2	ARSENIC	8.2	В		P	3
7440-39-3	BARIUM	26.2			P	5
7440-41-7	BERYLLIUM	1.60	U		P	5
7440-43-9	CADMIUM	12.95	U		P	5
7440-70-2	CALCIUM	582000			P	5
7440-47-3	CHROMIUM	2.2	В		P	3
7440-48-4	COBALT	1.65	U		P	3
7440-50-8	COPPER	11.85	U		P	5
7439-89-6	IRON	156	В		P	5
7439-92-1	LEAD	2.61	U		P	3
7439-95-4	MAGNESIUM	1110000			P	5
7439-96-5	MANGANESE	2.90	U		P	5
7439-97-6	MERCURY	0.10	В		CV	1
7440-02-0	NICKEL	50.85	U		P	5
7440-09-7	POTASSIUM	347000			P	5
7782-49-2	SELENIUM	6.36	U	N	P	3
7440-22-4	SILVER	12.25	U		P	5
7440-23-5	SODIUM	8200000			P	50
7440-28-0	THALLIUM	8.55	U		P	3
7440-31-5	TIN	5.97	U		P	3
7440-62-2	VANADIUM	25.85	U		P	5
7440-66-6	ZINC	6.05	U		P	5

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

I

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: FC-MW-05-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0233-003

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7439-92-1	LEAD	1.0	В		P	1

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Lab Name: Katahdin Analytical Services

Client Field ID: FC-MW-06-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0233-001

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	
7439-92-1	LEAD	3.6	В		P	1	

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Lab Name: Katahdin Analytical Services

Client Field ID: FC-MW-20R-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0233-002

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	
7439-92-1	LEAD	40.2			P	1	

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Lab Name: Katahdin Analytical Services

Client Field ID: I8MW8-1-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0233-004

Concentration Units: ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF
7429-90-5	ALUMINUM	96.25	U		P	5
7440-36-0	ANTIMONY	3.57	U		P	3
7440-38-2	ARSENIC	5.5	В		P	3
7440-39-3	BARIUM	110			P	5
7440-41-7	BERYLLIUM	1.60	U		P	5
7440-43-9	CADMIUM	12.95	U		P	5
7440-70-2	CALCIUM	238000			P	5
7440-47-3	CHROMIUM	1.8	В		P	3
7440-48-4	COBALT	1.65	U		P	3
7440-50-8	COPPER	11.85	U		P	5
7439-89-6	IRON	23.65	U		P	5
7439-92-1	LEAD	2.61	U		P	3
7439-95-4	MAGNESIUM	1020000			P	5
7439-96-5	MANGANESE	20.2	В		P	5
7439-97-6	MERCURY	0.09	В		CV	1
7440-02-0	NICKEL	50.85	U		P	5
7440-09-7	POTASSIUM	355000			P	5
7782-49-2	SELENIUM	6.36	U	N	P	3
7440-22-4	SILVER	12.25	U		P	5
7440-23-5	SODIUM	8320000			P	50
7440-28-0	THALLIUM	8.55	U		P	3
7440-31-5	TIN ·	5.97	U		P	3
7440-62-2	VANADIUM	25.85	U		P	5
7440-66-6	ZINC	6.05	U		P	5

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Lab Name: Katahdin Analytical Services

Client Field ID: 18MW8-2-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0233-005

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	
7429-90-5	ALUMINUM	124	В		P	5	
7440-36-0	ANTIMONY	17.2	В		P	.3	
7440-38-2	ARSENIC	53.1			P	3	
7440-39-3	BARIUM	90.7			P	5	
7440-41-7	BERYLLIUM	1.60	U		P	5	
7440-43-9	CADMIUM	12.95	U		P	5	
7440-70-2	CALCIUM	514000			P	5	
7440-47-3	CHROMIUM	7.1	В		P	3	
7440-48-4	COBALT	1.65	U		P	3	
7440-50-8	COPPER	11.85	U		P	5	
7439-89-6	IRON	159	В		P	5	
7439-92-1	LEAD	2.61	U		P	3	
7439-95-4	MAGNESIUM	1400000			P	5	
7439-96-5	MANGANESE	2.90	U		P	5	
7439-97-6	MERCURY	0.09	В		CV	1	
7440-02-0	NICKEL	50.85	U		P	5	
7440-09-7	POTASSIUM	462000			P	5	
7782-49-2	SELENIUM	6.36	U	N	P	3	
7440-22-4	SILVER	12.25	U		P	5	
7440-23-5	SODIUM	11200000			P	50	
7440-28-0	THALLIUM	8.55	U		P	3	
7440-31-5	TIN	5.97	U		P	3	
7440-62-2	VANADIUM	30.2	В		P	5	
7440-66-6	ZINC	11.7	В		P	5	

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Lab Name: Katahdin Analytical Services

Client Field ID: S1MW-7-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0233-006

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	96.25	U		P	5
7440-36-0	ANTIMONY	4.0	В		P	3
7440-38-2	ARSENIC	11.6	В		P	3
7440-39-3	BARIUM	23.4	В		P	5
7440-41-7	BERYLLIUM	1.60	U		P	5
7440-43-9	CADMIUM	12.95	U		P	5
7440-70-2	CALCIUM	576000			P	5
7440-47-3	CHROMIUM	2.3	В		P	3
7440-48-4	COBALT	1.65	U		P	3
7440-50-8	COPPER	11.85	U		P	5
7439-89-6	IRON	111	В		P	5
7439-92-1	LEAD	2.61	U		P	3
7439-95-4	MAGNESIUM	1100000			P	5
7439-96-5	MANGANESE	2.90	U		P	5
7439-97-6	MERCURY	0.09	В		CV	1
7440-02-0	NICKEL	50.85	U		P	5
7440-09-7	POTASSIUM	348000			P	5
7782-49-2	SELENIUM	6.36	U	N	P	3
7440-22-4	SILVER	12.25	U		P	5
7440-23-5	SODIUM	8410000			P	50
7440-28-0	THALLIUM	8.55	U		P	3
7440-31-5	TIN	5.97	U		P	3
7440-62-2	VANADIUM	25.85	U		P	5
7440-66-6	ZINC	11.0	В		P	5

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Lab Name: Katahdin Analytical Services

Client Field ID: S1SW-1-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0246-010

Concentration Units: ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF
7429-90-5	ALUMINUM	132	В		P	3
7440-36-0	ANTIMONY	13.9	В		P	5
7440-38-2	ARSENIC	7.80	U		P	5
7440-39-3	BARIUM	123			P	3
7440-41-7	BERYLLIUM	0.96	U		P	3
7440-43-9	CADMIUM	7.77	U		P	3
7440-70-2	CALCIUM	1250000			P	3
7440-47-3	CHROMIUM	41.4	В		P	5
7440-48-4	COBALT	2.75	U		P	5
7440-50-8	COPPER	16.6	В		P	3
7439-89-6	IRON	31.2	В		P	3
7439-92-1	LEAD	4.35	U		P	5
7439-95-4	MAGNESIUM	1540000			P	10
7439-96-5	MANGANESE	5.80	U		P	10
7439-97-6	MERCURY	0.83			CV	1
7440-02-0	NICKEL	30.51	U		P	3
7440-09-7	POTASSIUM	679000			P	3
7782-49-2	SELENIUM	10.60	U		P	5
7440-22-4	SILVER	7.35	U		P	3
7440-23-5	SODIUM	15200000			P	100
7440-28-0	THALLIUM	14.25	U		P	5
7440-31-5	TIN	9.95	U		P	5
7440-62-2	VANADIUM	28.4	В		P	3
7440-66-6	ZINC	7.1	В		P	3

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Lab Name: Katahdin Analytical Services

Client Field ID: S1SW-2-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0246-011

Concentration Units: ug/L

7429-90-5 ALUMINUM 96.25 U P 5 7440-36-0 ANTIMONY 3.57 U P 3 7440-38-2 ARSENIC 4.68 U P 3 7440-39-3 BARIUM 17.3 B P 5 7440-41-7 BERYLLIUM 1.60 U P 5 7440-43-9 CADMIUM 12.95 U P 5 7440-70-2 CALCIUM 559000 P 10 7440-47-3 CHROMIUM 1.26 U P 3 7440-48-4 COBALT 1.65 U P 3 7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-95-4 MAGNESIUM 1670000 P 10
7440-38-2 ARSENIC 4.68 U P 3 7440-39-3 BARIUM 17.3 B P 5 7440-41-7 BERYLLIUM 1.60 U P 5 7440-43-9 CADMIUM 12.95 U P 5 7440-70-2 CALCIUM 559000 P 10 7440-47-3 CHROMIUM 1.26 U P 3 7440-48-4 COBALT 1.65 U P 3 7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7440-39-3 BARIUM 17.3 B P 5 7440-41-7 BERYLLIUM 1.60 U P 5 7440-43-9 CADMIUM 12.95 U P 5 7440-70-2 CALCIUM 559000 P 10 7440-47-3 CHROMIUM 1.26 U P 3 7440-48-4 COBALT 1.65 U P 3 7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7440-41-7 BERYLLIUM 1.60 U P 5 7440-43-9 CADMIUM 12.95 U P 5 7440-70-2 CALCIUM 559000 P 10 7440-47-3 CHROMIUM 1.26 U P 3 7440-48-4 COBALT 1.65 U P 3 7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7440-43-9 CADMIUM 12.95 U P 5 7440-70-2 CALCIUM 559000 P 10 7440-47-3 CHROMIUM 1.26 U P 3 7440-48-4 COBALT 1.65 U P 3 7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7440-70-2 CALCIUM 559000 P 10 7440-47-3 CHROMIUM 1.26 U P 3 7440-48-4 COBALT 1.65 U P 3 7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7440-47-3 CHROMIUM 1.26 U P 3 7440-48-4 COBALT 1.65 U P 3 7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7440-48-4 COBALT 1.65 U P 3 7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7440-50-8 COPPER 11.85 U P 5 7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7439-89-6 IRON 183 B P 5 7439-92-1 LEAD 2.61 U P 3
7439-92-1 LEAD 2.61 U P 3
7439-95-4 MAGNESIUM 1670000 P 10
10,000
7439-96-5 MANGANESE 2.90 U P 5
7439-97-6 MERCURY 0.08 B CV 1
7440-02-0 NICKEL 50.85 U P 5
7440-09-7 POTASSIUM 526000 P 10
7782-49-2 SELENIUM 6.36 U P 3
7440-22-4 SILVER 12.25 U P 5
7440-23-5 SODIUM 13400000 P 100
7440-28-0 THALLIUM 8.55 U P 3
7440-31-5 TIN 5.97 U P 3
7440-62-2 VANADIUM 25.85 U P 5
7440-66-6 ZINC 51.2 B P 5

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Lab Name: Katahdin Analytical Services

Client Field ID: S1SW-3-0103

Matrix: WATER

SDG Name:

CTO233-4

Percent Solids: 0.00

Lab Sample ID: WT0246-012

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	281	В		P	3
7440-36-0	ANTIMONY	5.4	В		P	3
7440-38-2	ARSENIC	4.68	U		P	3
7440-39-3	BARIUM	52.6			P	3
7440-41-7	BERYLLIUM	0.96	U		P	3
7440-43-9	CADMIUM	17.6	В		P	3
7440-70-2	CALCIUM	606000			P	10
7440-47-3	CHROMIUM	62.4			P	3
7440-48-4	COBALT	1.65	U		P	3
7440-50-8	COPPER	28.9	В		P	3
7439-89-6	IRON	412			P	3
7439-92-1	LEAD	320			P	3
7439-95-4	MAGNESIUM	1380000			P	10
7439-96-5	MANGANESE	127			P	3
7439-97-6	MERCURY	0.40			CV	1
7440-02-0	NICKEL	30.51	U		P	3
7440-09-7	POTASSIUM	453000			P	3
7782-49-2	SELENIUM	6.36	U		P	3
7440-22-4	SILVER	7.35	U		P	3
7440-23-5	SODIUM	10300000			P	100
7440-28-0	THALLIUM	8.55	U		P	3
7440-31-5	TIN	5.97	U		P	3
7440-62-2	VANADIUM	15.51	U		P	3
7440-66-6	ZINC	120			P	3

Color Before: N/A

Clarity Before: N/A

Color After: N/A

Clarity After: N/A

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-8

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

 Sample Description
 Matrix
 Date Sampled
 Date Received

 0103-DUP-06
 AQ
 02/01/2003
 02/04/2003

Parameter	Result	Adj Pql	Method	Anal Date/Time	Ву	Prep Method	Prep Date	Ву	Notes
Chloride	760 mg/L	200	EPA 300.0	02/28/03 11:11	PAG	N/A	N/A	N/A	
Sulfate	180 mg/L	10	EPA 300.0	02/28/03 11:11	PAG	N/A	N/A	N/A	
Sulfide-Iodometric	11 mg/L	1.0	EPA 376.1	02/06/03 12:03	JF	N/A	N/A	N/A	
Total Organic Carbon	13 mg/L	1.0	EPA 415.1	02/06/03 13:54	CYD	N/A	N/A	N/A	
Notes									

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-2

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

 Sample Description
 Matrix
 Date Sampled
 Date Received

 S9MW-12-0103
 AQ
 02/03/2003
 02/04/2003

Parameter	Result	Adj Pgl	Method	Anal Date/Time	Ву	Prep Method	Prep Date	Ву	Notes
Chloride	33 mg/L	10	EPA 300.0	02/27/03 11:54	PAG	N/A	N/A	N/A	
Sulfate	20 mg/L	5.0	EPA 300.0	02/27/03 11:54	PAG	N/A	N/A	N/A	
Sulfide-Iodometric	2 mg/L	1.0	EPA 376.1	02/06/03 10:15	JF	N/A	N/A	N/A	
Total Organic Carbon	8.1 mg/L	1.0	EPA 415.1	02/06/03 13:12	CYD	N/A	N/A	N/A	

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-3

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

Sample Description		<u>Matrix</u>	Date Sampled	Date Received
S9MW-14-0103	•	AQ	02/01/2003	02/04/2003

Parameter	Result	Adj Pql	Method	Anal Date/Time	Ву	Prep Method	Prep Date	Ву	Notes
Chloride	810 mg/L	100	EPA 300.0	02/27/03 12:24	PAG	N/A	N/A	N/A	
Sulfate	170 mg/L	20	EPA 300.0	02/27/03 12:24	PAG	N/A	N/A	N/A	
Sulfide-Iodometric	11 mg/L	1.0	EPA 376.1	02/06/03 10:20	JF	N/A	N/A	N/A	
Total Organic Carbon	13 mg/L	1.0	EPA 415.1	02/06/03 13:18	CYD	N/A	N/A	N/A	

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-4

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

 Sample Description
 Matrix
 Date Sampled
 Date Received

 S9MW-15-0103
 AQ
 02/01/2003
 02/04/2003

Parameter	Result	Adj Pql	Method	Anal Date/Time	By	Prep Method	Prep Date	Ву	Notes
Chloride	130 mg/L	20	EPA 300.0	02/27/03 12:34	PAG	· N/A	N/A	N/A	
Sulfate	20 mg/L	5.0	EPA 300.0	02/27/03 12:34	PAG	N/A	N/A	N/A	
Sulfide-Iodometric	7.4 mg/L	1.0	EPA 376.1	02/06/03 11:15	JF	N/A	N/A	N/A	
Total Organic Carbon	10 mg/L	1.0	EPA 415.1	02/06/03 13:24	CYD	N/A	N/A	N/A	

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-5

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

Sample Description	<u>Matrix</u>	Date Sampled	Date Received
S9MW-21-0103	AQ	02/02/2003	02/04/2003

Parameter	Result	Adj Pql	Method	Anal Date/Time	Ву	Prep Method	Prep Date	Ву	Notes
Chloride	3400 mg/L	1000	EPA 300.0	02/27/03 12:44	PAG	"N/A	N/A	N/A	
Sulfate	590 mg/L	100	EPA 300.0	02/27/03 12:44	PAG	N/A	N/A	N/A	
Sulfide-Iodometric	5.9 mg/L	1.0	EPA 376.1	02/06/03 11:25	JF	N/A	N/A	N/A	
Total Organic Carbon	10 mg/L	1.0	EPA 415.1	02/06/03 13:30	CYD	N/A	N/A	N/A	

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-13

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

Sample Description	<u>Matrix</u>	Date Sampled	Date Received
S9MW-22-0103	AQ	02/02/2003	02/04/2003

0 mg/L	400							
	400	EPA 300.0	02/28/03 11:31	PAG	N/A	N/A	N/A	
0 mg/L	50	EPA 300.0	02/28/03 11:31	PAG	N/A	N/A	N/A	
mg/L	1.0	EPA 376.1	02/06/03 12:15	JF	N/A	N/A	N/A	
mg/L	1.0	EPA 415.1	02/06/03 13:00	CYD	N/A	N/A	N/A	
)	mg/L	mg/L 1.0	mg/L 1.0 EPA 376.1	mg/L 1.0 EPA 376.1 02/06/03 12:15	mg/L 1.0 EPA 376.1 02/06/03 12:15 JF	mg/L 1.0 EPA 376.1 02/06/03 12:15 JF N/A	mg/L 1.0 EPA 376.1 02/06/03 12:15 JF N/A N/A	mg/L 1.0 EPA 376.1 02/06/03 12:15 JF N/A N/A N/A N/A

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-6

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

Sample Description	<u>Matrix</u>	Date Sampled	Date Received
S9MW-24-0103	AQ	02/02/2003	02/04/2003

Parameter	Result	Adj Pql	Method	Anal Date/Time	Ву	Prep Method	Prep Date	Ву	Notes
Chloride	3900 mg/L	1000	EPA 300.0	02/28/03 10:51	PAG	N/A	N/A	N/A	-
Sulfate	470 mg/L	50	EPA 300.0	02/28/03 10:51	PAG	N/A	N/A	N/A	
Sulfide-Iodometric	12 mg/L	1.0	EPA 376.1	02/06/03 11:45	JF	N/A	N/A	N/A	
Total Organic Carbon	78 mg/L	1.0	EPA 415.1	02/06/03 13:36	CYD	N/A	N/A	N/A	

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-7

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

Sample Description

S9MW-25-0103

<u>Matrix</u>

AQ

Date Sampled 02/02/2003

Date Received

02/04/2003

Result	Adj Pql	Method	Anal Date/Time	Ву	Prep Method	Prep Date	Ву	Notes
2000 mg/L	1000	EPA 300.0	02/28/03 11:01	PAG	N/A	N/A	N/A	
650 mg/L	100	EPA 300.0	02/28/03 11:01	PAG	N/A	N/A	N/A	
5.9 mg/L	1.0	EPA 376.1	02/06/03 11:55	JF	N/A	N/A	N/A	
15 mg/L	1.0	EPA 415.1	02/06/03 13:42	CYD	N/A	N/A	N/A	
	2000 mg/L 650 mg/L 5.9 mg/L	2000 mg/L 1000 650 mg/L 100 5.9 mg/L 1.0	2000 mg/L 1000 EPA 300.0 650 mg/L 100 EPA 300.0 5.9 mg/L 1.0 EPA 376.1	2000 mg/L 1000 EPA 300.0 02/28/03 11:01 650 mg/L 100 EPA 300.0 02/28/03 11:01 5.9 mg/L 1.0 EPA 376.1 02/06/03 11:55	2000 mg/L 1000 EPA 300.0 02/28/03 11:01 PAG 650 mg/L 100 EPA 300.0 02/28/03 11:01 PAG 5.9 mg/L 1.0 EPA 376.1 02/06/03 11:55 JF	2000 mg/L 1000 EPA 300.0 02/28/03 11:01 PAG N/A 650 mg/L 100 EPA 300.0 02/28/03 11:01 PAG N/A 5.9 mg/L 1.0 EPA 376.1 02/06/03 11:55 JF N/A	2000 mg/L 1000 EPA 300.0 02/28/03 11:01 PAG N/A N/A 650 mg/L 100 EPA 300.0 02/28/03 11:01 PAG N/A N/A 5.9 mg/L 1.0 EPA 376.1 02/06/03 11:55 JF N/A N/A	2000 mg/L 1000 EPA 300.0 02/28/03 11:01 PAG N/A N/A N/A 650 mg/L 100 EPA 300.0 02/28/03 11:01 PAG N/A N/A N/A 5.9 mg/L 1.0 EPA 376.1 02/06/03 11:55 JF N/A N/A N/A N/A

Client: Amy Thomson

Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7

Pittsburgh, PA 15220

Lab Sample Id: WT0246-1

Report Date: 3/3/03 1:52:13 PM

Client PO: MSA-0402-N4113-05 N4202-WR308(SS)

Project: NAF KEY WEST CTO233

SDG: CTO233-4

 Sample Description
 Matrix
 Date Sampled
 Date Received

 S9MW-5-0103
 AQ
 02/01/2003
 02/04/2003

Parameter	Result	Adj Pql	Method	Anal Date/Time	Ву	Prep Method	Prep Date	Ву	Notes
Chloride	34 mg/L	10	EPA 300.0	02/27/03 11:44	PAG	N/A	N/A	N/A	
Sulfate	10 mg/L	5.0	EPA 300.0	02/27/03 11:44	PAG	N/A	N/A	N/A	
Sulfide-Iodometric	J0.65 mg/L	1.0	EPA 376.1	02/06/03 10:10	JF	N/A	N/A	N/A	1
Total Organic Carbon	24 mg/L	1.0	EPA 415.1	02/06/03 13:06	CYD	N/A	N/A	N/A	

^{(1) &#}x27;I' flag denotes an estimated value. The analyte was detected in the sample at a concentration greater than the measured detection limit but less than the laboratory's Practical Quantitation Level.

APPENDIX C

SUPPORT DOCUMENTATION

Units	Nsample	Lab ld	Qc Type	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
MG/L	0103-DUP-06	WT0246-8	NORMAL	2334	CL	02/01/03	02/28/03	02/28/03	27	0	27
MG/L	0103-DUP-06DUP	WT0246-8 DUP	DUPLICATE	2334	CL	02/01/03	02/28/03	02/28/03	27	0	27
MG/L	LABQC	MBLANK	P BLANK	2334	CL	02/07/03	02/27/03	02/27/03	20	0	20
MG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	CL	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-12-0103DUP	WT0246-2 DUP	DUPLICATE	2334	CL	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-12-0103MS	WT0246-2 MS	MS	2334	CL	02/03/03	02/27/03	02/27/03	24	О	24
MG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	CL	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	CL	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	CL	02/02/03	02/27/03	02/27/03	25	0	25
MG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	CL	02/02/03	02/28/03	02/28/03	26	0	26
MG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	CL	02/02/03	02/28/03	02/28/03	26	0	26
MG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	CL	02/02/03	02/28/03	02/28/03	26	0	26
MG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	CL	02/01/03	02/27/03	02/27/03	26	0	26
%	FC-MW-05-0103	WT0233-3	NORMAL	2334	EDB	01/31/03	02/10/03	02/10/03	10	0	10
%	FC-MW-06-0103	WT0233-1	NORMAL	2334	EDB	01/31/03	02/10/03	02/10/03	10	0	10
%	FC-MW-20R-0103	WT0233-2	NORMAL	2334	EDB	01/31/03	02/10/03	02/10/03	10	0	10
%	WG1604-BLANK	WG1604-1	P BLANK	2334	EDB	02/10/03	02/10/03	02/10/03	0	0	0
%	WG1604-LCS	WG1604-2	LCS	2334	EDB	02/10/03	02/10/03	02/10/03	0	0	0
%	WG1604-LCSD	WG1604-3	LCSD	2334	EDB	02/10/03	02/10/03	02/10/03	0	0	0
UG/L	0103-DUP-01	WT0233-007	NORMAL	2334	HG	01/31/03	02/11/03	02/11/03	11	0	11
UG/L	I8MW8-1-0103	WT0233-004	NORMAL	2334	HG	01/31/03	02/11/03	02/11/03	11	0	11
UG/L	I8MW8-2-0103	WT0233-005	NORMAL	2334	HG	01/31/03	02/11/03	02/11/03	11	0	11
UG/L	LABQC	PBWTB11HGW0	LCSD	2334	HG	02/27/03	02/11/03	02/11/03	-16	0	-16
UG/L	S1MW-7-0103	WT0233-006	NORMAL	2334	HG	01/31/03	02/11/03	02/11/03	11	0	11

Units	Nsample	Lab Id	Qc Type	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
UG/L	S1SW-1-0103	WT0246-010	NORMAL	2334	HG	02/01/03	02/11/03	02/11/03	10	0	10
UG/L	S1SW-2-0103	WT0246-011	NORMAL	2334	HG	02/01/03	02/11/03	02/11/03	10	0	10
UG/L	S1SW-3-0103	WT0246-012	NORMAL	2334	HG	02/01/03	02/11/03	02/11/03	10	0	10
UG/L	0103-DUP-01	WT0233-007	NORMAL	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	FC-MW-05-0103	WT0233-003	NORMAL	2334	М	01/31/03	02/05/03	02/12/03	5	7	12
UG/L	FC-MW-06-0103	WT0233-001	NORMAL	2334	М	01/31/03	02/05/03	02/12/03	. 5	7	12
UG/L	FC-MW-20R-0103	WT0233-002	NORMAL	2334	М	01/31/03	02/05/03	02/12/03	5	7	12
UG/L	I8MW8-1-0103	WT0233-004	NORMAL	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	I8MW8-1-0103MS	WT0233-004S	MS	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	I8MW8-1-0103MSD	WT0233-004P	MSD	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	I8MW8-2-0103	WT0233-005	NORMAL	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	LABQC	PBWTB07ICW0	P BLANK	2334	М	02/07/03	02/07/03	02/10/03	0	3	3
UG/L	S1MW-7-0103	WT0233-006	NORMAL	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	S1SW-1-0103	WT0246-010	NORMAL	2334	М	02/01/03	02/07/03	02/11/03	6	4	10
UG/L	S1SW-2-0103	WT0246-011	NORMAL	2334	М	02/01/03	02/07/03	02/25/03	6	18	24
UG/L	S1SW-3-0103	WT0246-012	NORMAL	2334	М	02/01/03	02/07/03	02/13/03	6	6	12
UG/L	0103-DUP-01	WT0233-7	NORMAL	2334	os	01/31/03	02/05/03	03/04/03	5	27	32
UG/L	S1MW-7-0103	WT0233-6	NORMAL	2334	os	01/31/03	02/05/03	03/03/03	5	26	31
UG/L	S1SW-1-0103	WT0246-10	NORMAL	2334	os	02/01/03	02/05/03	03/04/03	4	27	31
UG/L	S1SW-2-0103	WT0246-11	NORMAL	2334	os	02/01/03	02/05/03	03/03/03	4	26	30
UG/L	WG1575-BLANK	WG1575-1	P BLANK	2334	os	02/04/03	02/05/03	03/03/03	1	26	27
UG/L	WG1575-LCS	WG1575-2	LCS	2334	os	02/04/03	02/05/03	03/04/03	1	27	28
UG/L	WG1575-LCSD	WG1575-3	LCSD	2334	os	02/04/03	02/05/03	03/05/03	1	28	29
UG/L	0103-DUP-01	WT0233-7	NORMAL	2334	ov	01/31/03	02/07/03	02/07/03	7	0	7
UG/L	0103-DUP-06	WT0246-8	NORMAL	2334	ov	02/01/03	02/07/03	02/07/03	6	0	6
UG/L	0103-DUP-06DL	WT0246-8DL	DL	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	FC-MW-05-0103	WT0233-3	NORMAL	2334	ov	01/31/03	02/06/03	02/06/03	6	0	6

Units	Nsample	Lab Id	Qc Туре	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
UG/L	FC-MW-06-0103	WT0233-1	NORMAL	2334	ov	01/31/03	02/07/03	02/07/03	7	О	7
UG/L	FC-MW-20R-0103	WT0233-2	NORMAL	2334	ov	01/31/03	02/06/03	02/06/03	6	0	6
UG/L	S1MW-5-0103	WT0246-9	NORMAL	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	S1MW-7-0103	WT0233-6	NORMAL	2334	ov	01/31/03	02/07/03	02/07/03	7	0	7
UG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	ov	02/03/03	02/07/03	02/07/03	4	0	4
UG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	ov	02/01/03	02/07/03	02/07/03	6	0	6
UG/L	S9MW-14-0103DL	WT0246-3DL	DL	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	ov	02/01/03	02/07/03	02/07/03	6	0	6
UG/L	S9MW-15-0103DL	WT0246-4DL	DL	2334	ov	02/01/03	02/10/03	02/10/03	9	О	9
UG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	ov	02/02/03	02/10/03	02/10/03	8	О	8
UG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	ov	02/02/03	02/07/03	02/07/03	5	0	5
UG/L	S9MW-22-0103DL	WT0246-13DL	DL	2334	ov	02/02/03	02/10/03	02/10/03	8	О	8
UG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	ov	02/02/03	02/07/03	02/07/03	5	0	5
UG/L	S9MW-24-0103DL	WT0246-6DL	DL	2334	ov	02/02/03	02/10/03	02/10/03	8	0	8
UG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	ov	02/02/03	02/07/03	02/07/03	5	0	5
UG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	ov	02/01/03	02/07/03	02/07/03	6	0	6
UG/L	S9MW-5-0103MS	WG1695-3	MS	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	S9MW-5-0103MSD	WG1695-4	MSD	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	TB-013103	WT0233-8	NORMAL	2334	ov	01/21/03	02/07/03	02/07/03	17	0	17
UG/L	TB-020303	WT0246-14	NORMAL	2334	ov	01/21/03	02/07/03	02/07/03	17	0	17
UG/L	WG1669-BLANK	WG1669-1	P BLANK	2334	ov	02/05/03	02/05/03	02/05/03	0	0	0
UG/L	WG1669-LCS	WG1669-2	LCS	2334	ov	02/05/03	02/05/03	02/05/03	0	0	0
UG/L	WG1670-BLANK	WG1670-1	P BLANK	2334	ov	02/07/02	02/07/03	02/07/03	365	0	365
UG/L	WG1670-LCS	WG1670-2	LCS	2334	ov	02/07/02	02/07/03	02/07/03	365	0	365
UG/L	WG1691-BLANK	WG1691-1	P BLANK	2334	ov	02/07/03	02/07/03	02/07/03	0	0	0
UG/L	WG1691-LCS	WG1691-2	LCS	2334	ov	02/07/03	02/07/03	02/07/03	0	0	0
UG/L	WG1695-BLANK	WG1695-1	P BLANK	2334	ov	02/10/03	02/10/03	02/10/03	0	О	0

Units	Nsample	Lab ld	Qc Туре	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
UG/L	WG1695-LCS	WG1695-2	LCS	2334	ov	02/10/03	02/10/03	02/10/03	0	О	0
UG/L	0103-DUP-01	WT0233-7	NORMAL	2334	PEST	01/31/03	02/04/03	02/20/03	4	16	20
UG/L	S1MW-7-0103	WT0233-6	NORMAL	2334	PEST	01/31/03	02/04/03	02/20/03	4	16	20
UG/L	S1SW-2-0103	WT0246-11	NORMAL	2334	PEST	02/01/03	02/07/03	02/20/03	6	13	19
UG/L	WG1560-BLANK	WG1560-1	P BLANK	2334	PEST	02/03/03	02/04/03	02/20/03	1	16	17
UG/L	WG1560-LCS	WG1560-2	LCS	2334	PEST	02/03/03	02/04/03	02/20/03	1	16	17
UG/L	WG1560-LCSD	WG1560-3	LCSD	2334	PEST	02/03/03	02/04/03	02/20/03	1	16	17
UG/L	WG1590-BLANK	WG1590-1	P BLANK	2334	PEST	02/06/03	02/07/03	02/17/03	1	10	11
UG/L	WG1590-LCS	WG1590-2	LCS	2334	PEST	02/06/03	02/07/03	02/17/03	1	10	11
%	FC-MW-05-0103	WT0233-3	NORMAL	2334	SIM	01/31/03	02/04/03	02/28/03	4	24	28
%	FC-MW-05-0103RA	WT0233-3RA	NORMAL	2334	SIM	01/31/03	02/04/03	02/28/03	4	24	28
%	FC-MW-06-0103	WT0233-1	NORMAL	2334	SIM	01/31/03	02/04/03	02/28/03	4	24	28
%	FC-MW-20R-0103	WT0233-2	NORMAL	2334	SIM	01/31/03	02/04/03	03/05/03	4	29	33
%	WG1567-BLANK	WG1567-1	P BLANK	2334	SIM	02/04/03	02/04/03	02/28/03	0	24	24
%	WG1567-LCS	WG1567-2	LCS	2334	SIM	02/04/03	02/04/03	02/28/03	0	24	24
%	WG1567-LCSD	WG1567-3	LCSD	2334	SIM	02/04/03	02/04/03	02/28/03	0	24	24
MG/L	0103-DUP-06	WT0246-8	NORMAL	2334	SO4	02/01/03	02/28/03	02/28/03	27	0	27
MG/L	0103-DUP-06DUP	WT0246-8 DUP	DUPLICATE	2334	SO4	02/01/03	02/28/03	02/28/03	27	0	27
MG/L	LABQC	MBLANK	P BLANK	2334	SO4	02/28/03	02/28/03	02/28/03	0	0	0
MG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	SO4	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-12-0103DUP	WT0246-2 DUP	DUPLICATE	2334	SO4	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-12-0103MS	WT0246-2 MS-	MS	2334	SO4	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	SO4	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	SO4	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	SO4	02/02/03	02/27/03	02/27/03	25	0	25
MG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	SO4	02/02/03	02/28/03	02/28/03	26	0	26
MG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	SO4	02/02/03	02/28/03	02/28/03	26	0	26

Units	Nsample	Lab Id	Qc Type	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
MG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	SO4	02/02/03	02/28/03	02/28/03	26	О	26
MG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	SO4	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	0103-DUP-06	WT0246-8	NORMAL	2334	SUL	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	LABQC	MBLANK	LCSD	2334	SUL	02/06/03	02/06/03	02/06/03	0	0	0
MG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	SUL	02/03/03	02/06/03	02/06/03	3	0	3
MG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	SUL	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	SUL	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	SUL	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	SUL	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	SUL	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	SUL	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	SUL	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	0103-DUP-06	WT0246-8	NORMAL	2334	TOC	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	0103-DUP-06MS	WT0246-8 MS	MS	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	LABQC	MBLANK	P BLANK	2334	тос	02/28/03	02/06/03	02/06/03	-22	0	-22
MG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	тос	02/03/03	02/06/03	02/06/03	3	0	3
MG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-25-0103DUP	WT0246-7 DUP	DUPLICATE	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
UG/L	FC-MW-05-0103	WT0233-3	NORMAL	2334	TPH	01/31/03	02/06/03	02/19/03	6	13	19
UG/L	FC-MW-06-0103	WT0233-1	NORMAL	2334	TPH	01/31/03	02/06/03	02/19/03	6	13	19
UG/L	FC-MW-20R-0103	WT0233-2	NORMAL	2334	TPH	01/31/03	02/06/03	02/20/03	6	14	20

Units	Nsample	Lab Id	Qc Type	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
UG/L	WG1582-BLANK	WG1582-1	P BLANK	2334	TPH	02/05/03	02/06/03	02/19/03	1	13	14
UG/L	WG1582-LCS	WG1582-2	LCS	2334	TPH	02/05/03	02/06/03	02/19/03	1	13	14
UG/L	WG1582-LCSD	WG1582-3	LCSD	2334	TPH	02/05/03	02/06/03	02/19/03	1	13	14

CHAIN OF CUSTODY

3844 NUMBER

PAGE OF

PROJI	ECT NO:	7+233 NAF Key W	est	PROJE	CT MA	NAGER Bryd			ONE NU		963	L	ABORA	TORY N	NAME A	ND CO	NTA	ct: atahd	ih
SAMP	LERS (SI	7+233 NAF Key W	<u></u>	FIELD	OPER/	TIONS	LEADER	PH	ONE NU	MBER	14.	A	DDRES:	S		- 1			
En	Mika	^ ^				Likes		1	05-2	216.	-885	4	340	Cou	inty	Pd	. 1	Jo.5	
NOW	ment						IUMBER					C	ITY. ST	ATE	•				
OM	110			Fede	Ex	837	00	119	879	15			Wes	STOK	ook,	ME			,,
Sh	-d4 h	of. Justs								AINER 1 (IC (P) c	TYPE or GLAS	S (G)		6/6	; /c	, / (6/	/P /	Q / 6 /
RUSH	DARD TA					oc,			PRESI	ERVATI			V/2	ĮŲ.			\S. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	727	1,//
<u>24</u>	hr. 📗	48 hr.	14 day			SD,	۵		USED			<u>/`</u>	<u> </u>	\sim	Y '	/-	<u>~</u> /	-\$\frac{1}{2}	//-/
DATE 2003	SIMENO CONTAIN OF CONT																		
1/31	31 0845 FC-MW-06-0103 MW-6 GW G 10 X X X X X X (CTO ZOT																		
1/31																			
1/31		FC-MW-05-0103	MW-5			GN		10	Ý	X	Y	X	Y	′				cto 2	•
1/31	1225	IBMW8-1-0103	MW-3			6 W		1		_/_		_/\	/	Χv	/			C10 2	
1/31	1125	IBMW8-2-0103	MW-2		_	6W	6	1						X	/			102	
1/31	1427		NW-7		_	GW	6	8						\ <u>\</u>	/_/	X	X	200	
1/31	7161	0103-DUP-01	744-7		_	GW	6	8						$\frac{1}{2}$		~			
1/2)	1520	SISD-5-0103	405		_	40	6	2								X		CTO	_
1/21							t	2						\sim		 	Bu	(10)	233
1/31	1202	5150-2-0103	60-2			SD	6	-	-					X_		X		1610	<u> </u>
1/21		TB-013103	1		<u> </u>	QC	-	2								X	-	 	
					ļ	 											-	 	
						ļ													
1. REI	INOUISH X	ED BY Mila		DATE	103	T	IME 1730	1. RE	ECEIVE	BY 2	a	News	/			DA 1	TE -して	7	TIME 10130
2. REI	INOVISH	ED BY		DATE	·		IME		ECEIVE			my.				DA	TE		TIME
3. REI	INQUISH	ED BY	<u>-</u>	DATE		T	IME	3. RE	ECEIVED	BY						DA	TE		TIME
COM	MENTS						 -	<u> </u>				· · · · · · · · · · · · · · · · · · ·						i	
DISTE	RIBUTION	: WHITE (ACCOMPANIES SA	MPLE)			YELLO	W (FIELD	COPY	<u> </u>			PINI	K (FILE	COPY)					4/02F

0000012

CHAIN OF CUSTODY

NUMBER 384

3843 PAGE 1 OF 2

PROJECT	NO:	EACH ITV		DDO IE	CT MA	NACER)	Pu	ONE N	IMPER			AROPA	TORY	NAME A	ND CO	NTACT:	
SAMPLERS	233	FACILITY: NAT-KW		Chu	ick (MAGER	` V	3	13-6°	19-7 1MBER	963	,	Raut	ahli	MAINE A	And	NTACT:	olby
SAMPLERS	S (SIGN	ATURE)		FIELD	OPER/	ATONS	LEADER LEADER	PH				LA	DDRES	S	1.	01	Ν. 5	
En -	That	ee		CARRI	FRAVA	YBILL	し NUMBER	150	n-L	16-8	85	$I = \frac{1}{c}$	540	ATE	MAS	x rd	. No.3)
.				vi Vi	U.	70	0119	87	84				Nes	1600	ok.	ME	0409	2
		,				T.			CÓNT	AINER T				6/	Q/1	0 /0	1/10	/w/6/C
STANDARI	D TAT	₹				Ö,			PRES	ERVATI	VE.			Lux.	1	(0)4/		gar)
RUSH TAT	☐ 48	hr.	4 day			SD, C			USED			/4	×/N	AND X	<u>/</u> ×	gy,		
DATE 2003		0.445) 5 15	LOCATION ID	тор DЕРТН (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, ETC.)	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	THE	OF HALF			O'S	2 X		/ ,	1 -/	
		SAMPLE 1D 59MW-5-0103	NW-5			GW	G	7	3	[]	1	2	/			/ \ 		
		59.hw-12-0103	MW-12			GW		7	3	1 4	11	2						
		59MW-14-0103	MW-14			6W		7	3	1		2	/					
		S9MW-15-0103	MW-15			6W		7	3	1 1		2	,					
11111			MW 21						3		(1.		/					
		59MW-21-0603				6N		7		10		25	<u></u>					
	ſ	594W-22-0103	MW-2	1		GW		7	3	1		2	/			ļ		
	I	59MW-24-0103	MW-2	•	 	6W		7	3	~	/ 	2	<u> </u>					
2/2 100		59MW-25-0103	MW-25			16W		7	3	1	/ \	ヹ						
2/0 -		0103-DUP-06			 	6W	6	7	3	1	1-	2	<i>/</i>			ļ		
2/1 /2	05 5	51MW-5-0103	UW-5			GW	16	3	•				3					
4,0	142	5150-1-0103	40-1			50	G	3						1	1	1		
		1510-1-0103-MS	517-1		-	50	6	3						1	1	l		
	425	5150-1-0103-MSD				50	6	3						1	l	ı		
1. RELINO	UISHED	515 0 -1-0103-MSD Rec		DATE,	100	2	IME /	1. R	ECEIVE	D BY		1/2	7	-		DA	TE -4-63	TIME 0415
2. RELINO	UISHED	BY		DATE			TIME	2. R	EPEIVE	D BY	مرياست من					DA	TE	TIME
3. RELINQ	UISHED) BY		DATE			TIME	3. R	ECEIVE	D BY						DA	TE.	TIME
COMMENT	ΓS	· · · · · · · · · · · · · · · · · · ·		L		l		1										

こくろい

TETRA TECH NUS, INC.

CHAIN OF CUSTODY

NUMBER

3842

PAGE 2 OF 2

				PROJECT MANAGER PHONE NUMBER LABORATORY NAME AND CONTACT:																
PROJ	CT NO:		FACILITY:		PROJE	CT MA	NAGER		PI	HONE NU	MBER		Ĺ.	ABORA	TORY	NAME A	ND CON	NTACT:		
SAMP	LERS (SIG	NATURE)			FIELD	OPERA	TIONS	LEADER	PI	HONE NL	MBER	<u></u>	A	DDRES	S					
					CARRI	ER/WA	YBILL N	IUMBER					C	ITY, ST	ATE			· - ·		
										PLAS		or GLAS	S (G)	/0	2/9/	\mathbb{Z}				Z
RUSH	DARD TAT	/ \	hr.] 14 day			SD, QC			PRES USED	ERVATI	VE		XX O'Y						
DATE OCCIS	TIME		AMPLE ID	тор бертн (FT)	воттом рертн (FT)	MATRIX (GW, SO, SW, SD, QC, ETC.)	COLLECTION METHOD GRAP (G)	No. OF CONTAINERS	THE	OF MALY	SON TO SON		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					COMMENTS		
41	1	0103-	DUP-02				SD	6	3		1)								
	0924	5150-	2-0103				50	6	2	1		1				ļ				
41	1020	S150-	3-0103	50-3			5 <u>D</u>	G	73	1	/	1								
41	6942	515W-	1-0103	5W-1			SW	G	₹e	4 1 E	学2						ļ			
7/1	0924	515W-	2-0103	5W-2			SW	6	5	1	,2	2			ļ	ļ	ļ	<u> </u>		
4	1020	515W-	3-0103	5N-3	~	_	SW	G			1					ļ	-			
1/21		TB-02	0303				QC		2		ļ		2							
							ļ				ļ					-			~	
											ļ									
							-													
						 	 			-										
						 	†													
1. RE	LINQUISH	ED BY			DATE	1	<u> </u>	TIME	1.1	RECEIVE	D BY	B	-	16	2		3	でろ	TIME OFF	
2. RELINQUISHED BY DATE					DATE	<u> </u>		ГІМЕ	2.1	RECEIVE	DBY V		·				DA		TIME	
3. RE	LINQUISH	ED BY			DATE			ГІМЕ	3.	RECEIVE	D BY						DA	TE	TIME	
СОМІ	MENTS				1															

DISTRIBUTION:

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE NAF KEY WEST CTO 233 TASK ORDER MANAGER: CHARLES BRYAN CTO233-4

Sample Receipt

The following samples were received on February 1 and 4, 2003 and were logged in under Katahdin Analytical Services work order numbers WT0233 and WT0246 for a hardcopy due date of March 4, 2003.

KATAHDIN	TTNUS
Sample No.	Sample Identification
WT0233-1	FC-MW-06-0103
WT0233-2	FC-MW-20R-0103
WT0233-3	FC-MW-05-0103
WT0233-4	I8MW8-1-0103
WT0233-5	I8MW8-2-0103
WT0233-6	S1MW-7-0103
WT0233-7	0103-DUP-01
WT0233-8	TB-013103
WT0246-1	S9MW-5-0103
WT0246-2	S9MW-12-0103
WT0246-3	S9MW-14-0103
WT0246-4	S9MW-15-0103
WT0246-5	S9MW-21-0103
WT0246-6	S9MW-24-0103
WT0246-7	S9MW-25-0103
WT0246-8	0103-DUP-06
WT0246-9	S1MW-5-0103
WT0246-10	S1SW-1-0103
WT0246-11	S1SW-2-0103
WT0246-12	S1SW-3-0103
WT0246-13	S9MW-22-0103
WT0246-14	TB-020303

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, **Andrea J. Colby**. This narrative is an integral part of the Report of Analysis.

Organics Laboratory

Samples WT0233-1 through -8 were received on February 1, 2003. Samples WT0246-1 through -14 were received on February 4, 2003. Some of the samples were analyzed for pesticides according to SW846 8081A and/or petroleum range organics (PRO) according to Florida DEP FL-PRO, and/or Ethylene dibromide (EDB) according to method EPA 504.1 and/or Volatile Organics according to EPA SW-846 8260B and/or semivolatiles according to SW846 method 8270C (Appendix IX) and/or PAHs using SIM analysis in order to achieve lower detection limits. The samples were extracted and analyzed within holding time, and all QC criteria were acceptable with the following comments:

8081 Analysis

The laboratory control sample (LCS) WG1590-2 had low recoveries for the extraction surrogate DCB on both channels. Since the recoveries for TCX were acceptable, no corrective action was taken.

The closing calibration verification standard (CV) (files 8TB1232 and 8TB2232) had high responses for seven analytes on channel A and six analytes on channel B. These responses resulted in %D's that were outside the method limit of 15%. The associated samples may be biased accordingly for the aforementioned analytes.

The closing CV (files 8TB3070 and 8TB4070) had high responses for Endrin ketone on both channels, as well as high responses for beta-BHC and 4,4'-DDD on channel A. All of these responses resulted in %D's that were outside of the method acceptance limit of 15%. Since these responses would indicate a high biased and the samples did not detect any analytes above the MDL, the sample data quality should not be affected.

The opening CV (file 8TB4084) had a low response for delta-BHC on channel B, which resulted in %D's that were outside the method acceptance limit of 15%. The associated samples may be biased low for delta-BHC on channel B.

All samples and the associated QC were put through a sulfur cleanup according to SW846 method 3660 using the copper powder technique.

PRO Analysis

Sample WT0233-2 was diluted in order to bring the high PRO concentration into the calibration range.

504.1 Analysis

The closing CV (file 3TB1027) had a high response for the surrogate TCMX, which resulted in a %D that was outside of the method acceptance limit of 30%. The associated samples may be biased high for the surrogate on both channels.

8260 Analysis

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) and Matrix spike samples (MS/MSD's) are statistically derived. Katahdin standard operating procedure is to not take corrective action until greater than ten percent of the spiked analytes in the LCS are outside of QC limits.

The calibration method analyzed for Appendix Nine analytes for these work orders had several analytes with %RSD values exceeding the method acceptance limit of 15%. For those analytes, either a linear or quadratic model was used for quantitation. The following four analytes failed for both the linear and quadratic models in the initial calibration, Iodomethane, Acetonitrile, Carbon tetrachloride, and 1,4-Dioxane. These four compounds were calibrated using the quadratic model. Since these analytes were not detected above the MDL for any of the associated samples and all other QC criteria was met, the associated samples were not reanalyzed. Bromomethane failed for both the linear and quadratic models in the 8260 initial calibration. This compound was calibrated using the quadratic model. Since this analyte was not detected above the MDL for any of the associated samples and all other QC criteria was met, the associated samples were not reanalyzed.

Some manual integrations were performed due to split peaks and corrected baselines. All have been flagged with a "M" (software-generated) on the pertinent quantitation reports.

The matrix spike sample WG1695-3 and matrix spike duplicate sample WG1695-4 had low and/or high recoveries for several analytes. The %RPD's between WG1695-3 and WG1695-4 for these analytes were outside of the acceptance limit of 20%. These deviations are likely due to the matrix of the sample.

Samples WT0246-3, -4, -6, -8, and -13 were reanalyzed at a dilution in order to bring one or more target analytes into the calibration range.

8270 Analysis

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) and Matrix spike samples (MS/MSD's) are statistically derived. Katahdin standard operating procedure is to not take corrective action until greater than ten percent of the spiked analytes in the LCS are outside of QC limits.

In the Appendix IX calibration curve analyzed for these workorders, there were eight Appendix IX analytes and two 8270 analytes that had %RSD values exceeding the method acceptance criteria of 15%. The calibration curve for SIM analysis of PAHs was compliant.

Some manual integrations were performed due to split peaks and/or corrected baselines. All have been flagged with an "M" (software generated) on the pertinent quantitation reports.

Sample WT0233-2 was diluted 1:250 in order to bring one or more high concentration target analytes into the calibration range. Consequently, the extraction surrogates were diluted out of range.

Sample WT0233-3 was analyzed twice due to high recoveries for the internal surrogates. The reanalysis also had a high internal surrogate confirming a matrix effect. The results for both analyses are reported.

Sample WT0246-11 had a low recovery for the extraction surrogate 2-Fluorophenol, which was outside of the laboratory established acceptance limits. Since the other surrogates were acceptable the sample was not reanalyzed.

There were no other protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples of Katahdin SDG CTO233-4 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Aqueous Waste", SW-846, November 1986, Third Edition.

Inductively-Coupled Plasma Atomic Emission Spectroscopic Analysis (ICP)

Aqueous-matrix Katahdin Sample Nos. WT0233-(1-7) were digested for ICP analysis on 02/05/03 (QC Batch TB05ICW1) in accordance with USEPA Method 3010A. Katahdin Sample No. WT0233-4 was prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Nos. WT0246-(10-12) were digested for ICP analysis on 02/07/03 (QC Batch TB07ICW0) in accordance with USEPA Method 3010A. Duplicate laboratory control samples were prepared in this batch.

ICP analyses of SDG CTO233-4 sample digestates were performed using a Thermo Jarrell Ash (TJA) Trace ICP spectrometer and a TJA 61E ICP spectrometer. All samples were analyzed within holding times and all analytical run QC criteria were met, with the following comments or exceptions:

Some of the results for run QC samples (ICV, ICB, CCV, CCB, ICSA, and ICSAB) included in the accompanying data package may have exceeded acceptance limits for some elements. Please note that all client samples and batch QC samples associated with out-of-control results for run QC samples were subsequently reanalyzed for the analytes in question.

Several samples required dilution prior to analysis due to matrix interference.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Aqueous-matrix Katahdin Sample Nos. WT0233-(4-7) and WT0246-(10-12) were digested for mercury analysis on 02/11/03 (QC Batch TB11HGW0) in accordance with USEPA Method 7470A. Duplicate laboratory control samples were prepared in this batch.

Mercury analyses of Katahdin SDG CTO233-4 sample digestates were performed using a Leeman Labs PS200 automated mercury analyzer. All samples were analyzed within holding times and all analytical run QC criteria were met.

Matrix QC Summary

Element recoveries for both of the matrix-spiked aliquots of Katahdin Sample No.WT0233-4 were within the laboratory's matrix spike recovery acceptance criteria (75% - 125% recovery of the added element, if the native concentration is less than four times the amount added) for all analytes except selenium.

The matrix-spike duplicate precision analysis of Katahdin Sample No. WT0233-4 was within the laboratory's acceptance limit (<20% relative percent difference between duplicate matrix-spiked aliquots) for all analytes.

The serial dilution analysis of Katahdin Sample No. WT0233-4 was within the laboratory's acceptance limit (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the IDL) for all analytes.

Wet Chemistry Analysis

Samples were received on February 4, 2003 and logged in as work order WT0246. Analyses for Total Organic Carbon, and Sulfide were performed according to "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, 1979, Revised 1983. Analyses for Chloride and Sulfate were performed according to U.S. EPA "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA 600/R-93/100, August 1993.

All analyses were performed within analytical hold time. All quality control criteria were met.

No other deviations were noted by the Wet Chemistry group.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Operations Manager or the Quality Assurance Officer as verified by the following signature.

Maria Crouch

Quality Assurance Officer

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4 SOW No. SW846

Client Field ID	Lab Sample ID	
0103-DUP-01	WT0233-007	
FC-MW-05-0103	WT0233-003	
FC-MW-06-0103	WT0233-001	
FC-MW-20R-0103	WT0233-002	
I8MW8-1-0103	WT0233-004	
I8MW8-1-0103	WT0233-004P	
I8MW8-1-0103	WT0233-004S	
I8MW8-2-0103	WT0233-005	
S1MW-7-0103	WT0233-006	
S1SW-1-0103	WT0246-010	
S1SW-2-0103	WT0246-011	
S1SW-3-0103	WT0246-012	

 Were ICP interelement corrections applied?	Yes	
Were ICP background corrections applied ?	Yes	
If yes - were raw data generated before application of background corrections?	No	

Comments:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Edward A. Morgan

Date: February 27, 2003

Title: Senior Chemist

COVER PAGE - IN

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: ATB12A	Feb	12, 2003	21:58	File: ATB12A	Feb	12, 2003	23:18
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	50000.0	48999.86	98.0	ALUMINUM	50000.0	49898.92	99.8
ANTIMONY	1000.0	1025.08	102.5	ANTIMONY	1000.0	1046.01	104.6
ARSENIC	1000.0	1068.51	106.9	ARSENIC	1000.0	1094.99	109.5
CALCIUM	50000.0	52675.73	105.4	CALCIUM	50000.0	53785.26	107.6
CHROMIUM	1000.0	1009.18	100.9	CHROMIUM	1000.0	1028.83	102.9
COBALT	1000.0	991.28	99.1	COBALT	1000.0	1010.52	101.1
IRON	20000.0	20789.94	103.9	IRON	20000.0	21283.34	106.4
LEAD	1000.0	1064.64	106.5	LEAD	1000.0	1087.22	108.7
MAGNESIUM	50000.0	50625.29	101.3	MAGNESIUM	50000.0	51375.63	102.8
SELENIUM	1000.0	1058.97	105.9	SELENIUM	1000.0	1081.70	108.2
THALLIUM	1000.0	1082.92	108.3	THALLIUM	1000.0	1123.96	11249
TIN	1000.0	1055.46	105.5	TIN	1000.0	1082.78	108.3

no samples bracketed by this ccv

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: BTB06A	Feb 06, 2003		17:51	File: BTB06A	Feb	18:59	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	50000.0	50679.31	101.4	ALUMINUM	50000.0	51505.12	103.0
BARIUM	1000.0	1025.19	102.5	BARIUM	1000.0	1041.56	104.2
BERYLLIUM	1000.0	1013.51	101.4	BERYLLIUM	1000.0	1041.83	104.2
CADMIUM	1000.0	1003.14	100.3	CADMIUM	1000.0	1055.55	105.6
CALCIUM	50000.0	50703.15	101.4	CALCIUM	50000.0	52779.60	105.6
COPPER	1000.0	1023.93	102.4	COPPER	1000.0	1038.05	103.8
IRON	20000.0	20630.23	103.2	IRON	20000.0	21182.92	105.9
MAGNESIUM	50000.0	51033.19	102.1	MAGNESIUM	50000.0	51880.43	103.8
MANGANESE	1000.0	1008.02	100.8	MANGANESE	1000.0	1045.88	104.6
NICKEL	1000.0	1020.48	102.0	NICKEL	1000.0	1048.08	104.8
POTASSIUM	50000.0	55357.73	(10.7°)	POTASSIUM	50000.0	53181.39	106.4
SILVER	250.0	258.20	103.3	SILVER	250.0	266.71	106.7
VANADIUM	1000.0	1018.08	101.8	VANADIUM	1000.0	1051.31	105.1
ZINC	1000.0	1018.70	101.9	ZINC	1000.0	1054.20	105.4

no samples bracketed

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWTB051CW1

Matrix: WATER

SDG Name: CTO233-4

QC Batch ID: TB05ICW1

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	RESULT	C
ALUMINUM	19.250	U
ANTIMONY	1.550	В
ARSENIC	1.560	U
BARIUM	0.400	U
BERYLLIUM	0.320	U
CADMIUM	-2.930	В
CALCIUM	11.920	U
CHROMIUM	0.670	В
COBALT	0.550	U
COPPER	2,370	U
IRON	6.740	В
LEAD	4.350	В
MAGNESIUM	23.830	U
MANGANESE	-1.550	В
NICKEL	10.170	U
POTASSIUM	472.000	U
SELENIUM	2.120	U
SILVER	2,450	U
SODIUM	144.070	В
THALLIUM	2.850	U
TIN	1.990	U
VANADIUM	5.170	U
ZINC	1.210	U

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWTB07ICW0

Matrix: WATER

SDG Name: CTO233-4

QC Batch ID: TB07ICW0

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	RESULT	С	
ALUMINUM	22.850	В	
ANTIMONY	1.190	U	
ARSENIC	1.560	U	
BARIUM	0.400	U	
BERYLLIUM	0.320	U	
CADMIUM	-2.750	В	
CALCIUM	21.910	В	
CHROMIUM	0.420	U	
COBALT	0.550	U	
COPPER	2.370	U	
IRON	4.730	U	
LEAD	0.870	U	
MAGNESIUM	23.830	U	
MANGANESE	0.580	U	
NICKEL	10.560	В	
POTASSIUM	472.000	U	
SELENIUM	2.120	U	
SILVER	-3.380	В	
SODIUM	82.430	В	
THALLIUM	2.850	U	
TIN	1.990	U	
VANADIUM	5.170	U	
ZINC	1.210	U	

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWTB11HGW0

Matrix: WATER

SDG Name: CTO233-4

QC Batch ID: TB11HGW0

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	RESULT	С
MERCURY	0.030	U

3A INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

C	. 4:	1 1-14		/	
Concentra	ation	Onit	S.	ug/	L

SAMPLE: ICI	В		SAMPLE: C	ССВ			SAMPLE:	CCB		
File: ATBITA Fe	b 11, 2003	15:37	File: ATB11A	Feb 11, 2003	16:17	_	File: ATB11A	Feb 11, 200	3 1	7:38
Analyte	Result	С	Analyte	Result	C		Analyte	Resi	ılt (
ALUMINUM	9.98	U/	ALUMINUM	-12.73	B	-	ALUMINUM	9.9	96 U	 J
ANTIMONY	1.19	\nearrow	ANTIMONY	1.19	U		ANTIMONY	1.3	19 U	J
ARSENIC	1.56	U	ARSENIC	1.56	U		AKSENIC	1.5	56 l	J
CALCIUM	8.35	В	CALCIUM	11.83	В	/	CALCIUM	27.6	52 E	3
CHROMIUM	0.42	U	CHROMIUM	0.42	U		CHROMIUM	0.4	12 U	J
COBALT /	0.55	U	COBALT	0.55	U/		COBALT	0.:	55 U	J
IRON	-7.71	В	IRON	-7.25	B		IRON	6.2	27 U	J
LEAD /	0.87	U	LEAD	0.8/	U		LEAD	0.4	37 U	J
MAGNESIUM	5.73	U	MAGNESIUM	5.73	U		MAGNESIUM	12.6	68 1	₹
SELENIUM	2.12	U	SELENIUM	2.12	U		SELENIUM	2.	12 U	J
THALLIUM	2.85	U	THALLIUM	2.85	U		THALLIUM	3.3	38 E	3
ZIN	1.99	U	TIN	1.99	U		TIN	1.9	99 T	J

3A INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

SAMPLE:	ССВ		SAMPLE:	ССВ	****
File: ATBIIA	Feb 11, 2003	18:58	File: ATB11A	Feb 11, 2003	20:18
Analyte	Result	C	Analyte	Result	C
ALUMINUM	9.96	U	ALUMINUM	15.27	В
ANTIMONY	1.19	U	ANTIMONY	1.19	U
ARSENIC	1.50	U	ARSENIC	1.56	U
CALCIUM	23.74	BX	CALCIUM	8.24	U
CHROMIUM	0.42	Ø	CHROMIUM	0.42	U
COBALT	0.55	U	CORALT	0.55	U
IRON	-6.70	В	IRON	-7.75	В
LEAD	0.87	U	LEAD	0.87	U
MAGNESIUM	12.52	В	MAGNESIUM	5.73	U
SELENIUM	2.12	U	SELENIUM	2.12	U
THALLIUM /	4.26	В	THALLIUM	2.85	U
TIN /	1.99	U	TIN	1.99	U

3A INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

			Concent	ration Units: 1	ıg/L			
SAMPLE:	ICB		SAMPLE: C	CB /	,	SAMPLE:	CCB	
File: ATB12A	Feb 12, 2003	14:41	File: ATB12A	Feb 12, 2008	15:21	File: ATB12A	Feb 12, 2003	16:41
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	9.96	U	ALUMINUM	19.51	В	ALUMINUM	45	В
ANTIMONY	1.19	U	ANTIMONY	/ 1.19	U	ANTIMONY	1.19	U
ARSENIC	1.56	U	ARSENIC \	/ 1.56	U	ARSENIC	1.56	U
CALCIUM	8.24	U	CALCIUM \	8.24	U	CALCIUM	8.24	U
CHROMIUM	0.42	U	CHROMIUM V	0.42	U	CHROMIUM	0.42	U
COBALT	0.55	U	COBALT /\	0.55	U	COBALT	0.55	U
IRON	6.27	U	IRON /	6.27	U	IRON		В
LEAD	0.87	U	LEAD /	0.87	U	LEAD	0.87	, U
MAGNESIUM	5.73	U	MAGNESIUM	5.73	U	MAGNESIUM	(129)) B
SELENIUM	2.12	U	SELENJUM	2.12	U	SELENIUM	2.12	U
THALLIUM	2.85	U	THALLIUM	2.85	U	THALLIUM	2.85	U
TIN	1.99	U	TIN	1.99	U	TIN	1.99	U

Lab Name: Katahdin Analytical Services SDG Name: CTO233-4

SAMPLE:	CCB		SAMPLE:	CCB		SAMPLE:	CCB	
File: ATB12A	Feb 12, 2003	18:04	File: ATB12A	Feb 12, 2003	19:24	File: ATB12A	Feb 12, 2003	20:44
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	58.94	В	ALUMINUM	73.63	В	ALUMINUM	79	В
ANTIMONY	1.19	U	ANTIMONY	1.19	U	ANTIMONY	1.19	U
ARSENIC	1.56	U	ARSENIC	1.56	U	ARSENIC	1.56	U
CALCIUM	-11.87	В	CALCIUM	-33.43	В	CALCIUM	-40.80	В
CHROMIUM	0.42	U	CHROMIUM	0.42	U	CHROMIUM	0.42	U
COBALT	0.55	U	COBALT	0.55	U	COBALT	0.55	U
IRON	6.27	U	IRON	6.27	U	IRON	6.27	U
LEAD	0.87	U	LEAD	0.87	U	LEAD	0.87	U
MAGNESIUM		В	MAGNESIUM	5.73	U	MAGNESIUM	5.73	U
SELENIUM	2.12	U	SELENIUM	2.12	U	SELENIUM	2.12	U
THALLIUM	2.85	U	THALLIUM	2.85	U	THALLIUM	2.85	U
TIN	1.99	U	TIN	1.99	U	TIN	1.99	U

3A INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: CTO233-

Concentration Unit								
SAMPLE:	CCB		SAMPLE:	CCB/				
File: ATB12A	Feb 12, 2003	22:05	File: ATB12A	Feb 12, 2003	23:25			
Analyte	Result	C	Analyte	Result	C			
ALUMINUM	113.85	В	ALUMINUM	129.35	В			
ANTIMONY	1.19	Ų	ANTIMONY	1.19	U			
ARSENIC	1.56	U	ARSENIC	-1.81	В			
CALCIUM	-47.05	В	CALCIUM	-53.10				
CHROMIUM	0.42	U/	CHROMIUM	0.44	В			
COBALT	0.55	Ú	COBALT	0.55	U			
IRON	6.74	В	IRON	7.11	В			
LEAD	0.87	U	LEAD	0.87	U			
MAGNESIUM	5.92	В	MAGNESIUM	5.73	U			
SELENIUM	2.12	U	SELENIUM	2.12	U			
THALLIUM/	2.85	U	THALLIUM	2 85	U			
TIN	1.99	U	TIN	1.99	U			

3A INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

			Conc	entration Units: ι	ıg/L			
SAMPLE:	ICB		SAMPLE:	CCB		SAMPLE: 9	ĆВ	
File: BTB06A	Feb 06, 2003	14:00	File: BTB06A	Feb 06, 2003	14:34	File: BTB06A	Feb 06, 2003	15:41
Analyte	Result	С	Analyte	Result	C	Analyte	Result	С
ALUMINUM	19.25	U	ALUMINUM	19.25	U	ALUMINUM	19.25	U
BARIUM	0.40	U	BARIUM	0.40	U	BARIUM	0.40	U
BERYLLIUM	0.32	U	BERYLLIUM	0.32	d	BERYLLIUM	0.32	В
CADMIUM	2.59	U	CADMIUM	2.59	U `	CADMIUM	-4.28	В
CALCIUM	11.92	U	CALCIUM	11.92	U	CALCIUM	18.04	В
COPPER	2.37	U	COPPER	2.37	U/	COPRER	2.37	U
IRON	4.73	U	IRON	5.45	В	IRON	7.34	В
MAGNESIUM	23.83	U	MAGNESIUM	23.83	U	MAGNESIUM	23.83	U
MANGANESE	-1.26	В	MANGANESE	1.26	В	MANGANESE	-0.93	В
NICKEL	10.17	U	NICKEL	10.17	U	NICKEL	10.17	U
POTASSIUM	472.00	U	POTASSIUM	472.00	U	POTASSIUM	172.00	U
SILVER	2.45	U	SILVER	-4.15	В	SILVER	2.45	U
VANADIUM	5.17	U	VANADIUM/	5.17	U	VANADIUM	5.17	Ù
ZINC	1.21	U	ZINC /	1.21	U	ZINC	1.21	U

3A INITIAL AND CONTINUING CALIBRATION BLANKS

	Lab Nam	e: Katahd	in Analytical Services	SI	DG Name:	CTO233-4		
\			Concentra	ation Units: v	ıg/L			
SAMPLE: CCE	3		SAMPLE: CO	В		SAMPLE:	CCB	
File: BTB06A Feb	06, 2003	16:49	File: BTB06A Fe	eb 06, 2003	17:57	File: BTB06A	Feb 06, 2003	19:04
Analyte	Result	С	Analyte	Result	C	Analyte	Result	С
ALUMINUM	19.25	U	ALUMINUM	42.38	В	ALUMINUM	19.25	U
BARIUM	0.40	U	BARIUM	0.40	U	BARIUM	0.40	U
BERYLLIUM	0.32	U /	BERYLLIUM	0.32	U	BERYLLIUM	0.32	U
CADMIUM	2.59	Ū	CADMIUM	2.59	U	CADMIUM	2.59	U
CALCIUM	12.69	B/	CALCIUM	47.36	В	CALCIUM	11.92	U
COPPER	2.37/	U	COPPER	2.37	U	COPPER	2.37	U
IRON	13.05	В	irðų	22.72	В	IRON	8.66	$>_{\mathrm{B}}$
MAGNESIUM	23.83	U	MAGNESIUM	54.64		MAGNESIUM	23.83	U
MANGANESE /	-1.27	В	MANGANÈSE	-1.26	В	MANGANESE	-1.25	В
NICKEL	10.17	U	NICKEL	10.17	U	NICKEL	10.17	U
POTASSIUM	472.00	U	POTASSIUM	472.00	U	POTASSIUM	544.18	В
SILVER /	2.45	U	SILVER	2.45	U	SILVER	2.45	U
VANADIUM	5.17	U	VANADIUM	3,17	U	VANADIUM	5.17	υ
ZINC	1.21	U	ZINC	1.21	U	ZINC	1.31) B

3A INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

			Cond	centration Units/	ug/L
SAMPLE:	CCB		SAMPLE:	CCB /	
File: BTB06A	Feb 06, 2003	20:12	File: BTB06A	Feb 06, 2003	21:20
Analyte	Result	С	Analyte	Result	C
ALUMINUM	19.25	U	ALUMINUM	19.25	U
BARIUM	0.40	U	BARIUM \	0.40	U
BERYLLIUM	0.32	U	BERYLLIUM \	0.32	U
CADMIUM	2.59	U	CADMIUM	-3.72	В
CALCIUM	20.04	В	CALCIUM	20.55	В
COPPER	2.37	U	COPPER	2.37	U
IRON	10.17) В	IRON /	14.68	В
MAGNESIUM	23.83	U	MAGNESIUM	26.34	В
MANGANESE	-1.24	В	MANGANESE	10.91	В
NICKEL	10.17	U	NICKEL /	10.17	U
POTASSIUM	472.00	U	POTASSIUM	653.26	В
SILVER	2.45	U	SILVER	2.4	U
VANADIUM	5.17	U	VANAPIUM	5.17	U
ZINC	13)	В	ZINC	2.34	В

3A INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

SAMPLE:	ICB		SAMPLE:	ССВ		SAMPLE:	CCB	
File: BTB10A	Feb 10, 2003	15:33	File: BTB10A	Feb 10, 2003	16:07	File: BTB10A	Feb 10, 2003	17:15
Analyte	Result	C	Analyte	Result	C	Analyte	Result	С
ALUMINUM	19.25	U	ALUMINUM	19.25	Ü	ALUMINUM	32.82	В
BARIUM	0:40	U	BARIUM	0.40	U	BARIUM	0.40	U
BERYLLIUM	0.34	В	BERYLLIUM	0.32	U /	BERYLLIUM	0.32	U
CADMIUM	2.59	U	CADMIUM	2.59	U/	CADMIUM	2.59	U
CALCIUM	15.65	В	CALCIUM	11.92/	U	CALCIUM	16.06	В
COPPER	2.37	U	COPPER	2.37	U	COPPER	2.37	U
IRON	6.51	В	IRON	4.73	U	IRON	13.21	В
MAGNESIUM	23.83	U	MAGNESIUM	23.83	0	MAGNESIUM	34.31	В
MANGANESE	0.58	U	MANGANESE/	0.58	U	MANGANESE	0.58	U
NICKEL	10.17	U	NICKEL	10.17	U.	NICKEL	10.17	U
POTASSIUM	472.00	U	POTASSIUM	472.00	U	POTASSIUM	472.00	U
SILVER	2.45	U	SILVER	2.45	U	SILVER	2.45	U
SODIUM	24.57	U	SODIUM	24.57	U	SODIUM	24.57	U
VANADIUM	5.17	U /	VANADIUM	5.17	U	VANADIUM	5.17	U
ZINC	1.21	Ú	ZINC	1.21	U	ZINC	1.21	U

3A
INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

SAMPLE:	CCB .		SAMPLE:	ССВ	
File: BTB10A	Feb 10, 2003	18:22	File: BTB10A	Feb 10, 2003	19:30
Analyte	Result	C	Analyte	Result	C
ALUMINUM	19.25	U	ALUMINUM	56.81	В
BARIUM	0.40	U	BARIUM	0.40	U
BERYLLIUM	0.32	U	BERYLLIUM	0.34	В
CADMIUM	2.59	U	CAPMIUM	2.59	U
CALCIUM	32.41	В	CALCIUM	70.39	
COPPER	2.37	\U	COPPER	2.37	U
IRON	11.16	В	IRON	27.63	В
MAGNESIUM	29.00	В	MAGNESIUM	64.10	
MANGANESE	0.58	/υ	MANGANESE	0.58	U
NICKEL	10.76	В	NICKEL	10.17	U
POTASSIUM	472.00	U	POTASSIUM	472.00	U
SILVER	2.45	U	SILVER	2.45	U
SODIUM	36.42	В	SODIUM	24.57	U
VANADIUM	5.17	U	VANADIUM	5.17	U
ZINC	1.21	U	ZINC	1.21	U

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

SAMPLE:	ICB		SAMRLE: C	CCB		SAMPLE: CO	B /	
File: BTB11A	Feb 11, 2003	14:18	File: BTBNA	Feb 11, 2003	14:52	File: BTB11A Fe	6 11, 2003	16:00
Analyte	Result	С	Analyte	Result	C	Analyte	Result	С
ALUMINUM	19.25	U	ALUMINUM	26.63	В	ALUMINUM	26.91	В
BARIUM	0.40	U	BARIUM	0:40	U	BARIUM	0.50	В
BERYLLIUM	0.32	U	BERYLLIUM	0.32	У	BERYLLIUM	0.32	U
CADMIUM	2.59	U	CADMIUM	2.59	U	CADMIUM	2.59	U
CALCIUM	11.92	U	CALCIUM	20.32	В	CALCIUM	40.73	В
COPPER	2.37	U	COPPER	2.37	y	COPPER	2.37	U
IRON	4.73	U	IRON	9.32/	В	IRQN	13.60	В
MAGNESIUM	23.83	U	MAGNESIUM	26,63	В	MAGNESIUM	23.83	U
MANGANESE	0.58	U	MANGANESE	0.58	U	MANGANESE	0.58	U
NICKEL	10.17	U	NICKEL	10.17	U	NICKEL	10.17	U
POTASSIUM	472.00	U	POTASSIUM	472.00	U	POTASSIUM	472.00	U
SILVER	2.45	U	SILVER /	2.45	U	SILVER	3.97	В
SODIUM	24.57	U	SODIUM /	24.57	U	SODIUM	24.57	U
VANADIUM	5.17	U	VANADIUM	5.17	U	VANADIUM	5.17	U
ZINC	1.21	U	ZINC	2.28	В	ZINC	1.91	В

Lab Name: Katahdin Analytical Services SDG Name: CTO233-4

SAMPLE:	CCB		SAMPLE:	ССВ		SAMPLE:	ССВ	
File: BTB11A	Feb 11, 2003	17:07	File: BTB11A	Feb 11, 2003	18:15	File: BTB11A	Feb 11, 2003	19:23
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	19.25	U	ALUMINUM	19.25	U	ALUMINUM	19.25	U
BARIUM	0.40	U	BARIUM	0.40	U	BARIUM		В
BERYLLIUM		В	BERYLLIUM	0.32	U	BERYLLIUM	0.32	U
CADMIUM	2.59	U	CADMIUM	2.59	U	CADMIUM	2.59	U
CALCIUM		В	CALCIUM	11.92	U	CALCIUM	17.55	В
COPPER	2.37	U	COPPER	2.37	U	COPPER	2.37	U
IRON		В	IRON	4.73	U	IRON	7.36	В
MAGNESIUM	23.83	U	MAGNESIUM	23.83	U	MAGNESIUM	23.83	U
MANGANESE	-0.66	В	MANGANESE	-0.66	В	MANGANESE	-0.65	В
NICKEL	-10.83	В	NICKEL	10.17	U	NICKEL	10.17	U
POTASSIUM	472.00	U	POTASSIUM	472.00	U	POTASSIUM	472.00	U
SILVER	-3.46	В	SILVER	2.45	U	SILVER	· F	В
SODIUM	24.57	U	SODIUM	24.57	U	SODIUM	24.57	U
VANADIUM	5.17	U	VANADIUM	5.17	U	VANADIUM	5.17	U
ZINC	(N.61)) _B	ZINC	1.21	U	ZINC	1.21	U

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

SAMPLE:	ССВ	
File: BTB11A	Feb 11, 2003	20:30
Analyte	Result	C
ALUMINUM	1,9.25	U
BARIUM	0.51	В
BERYLLIUM	0.32	U
CADMIUM	2.59	U
CALCIUM \	21.22	В
COPPER	2.37	U
IRON /	10.94	В
MAGNESIUM	23.83	U
MANGANESE	0.58	U
NICKEL /	\10.17	U
POTASSIUM	472.00	U
SILVER	3.34	В
SODIŲM	24.5	U
VANADIUM	5.17	U
ZINC	1.21	\setminus_{U}

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

SAMPLE:	ICB		SAMPLE:	CCB		SAMPLE: CC	В	
File: BTB13A	Feb 13, 2003	14:24	File: BTB13A	Feb 13, 2003	15:02	File: BTB13A Fe	b 13, 2003	16:10
Analyte	Result	С	Analyte	Result	C	Analyte	Result	C
ALUMINUM	19.25	U	ALUMINUM	19.25	U	ALUMINUM	19.25	U
BARIUM	0.40	U	BARIUM	0.40	U	BARIUM	0.40	U
BERYLLIUM	0.32	U	BERYLLIUM	0.32	U	BERYLLIUM	0.32	U
CADMIUM	2.59	U	CADMIUM	2.59		CADMIUM	-2.86	В
CALCIUM	11.92	U	CALCIUM		В	CALCIUM	11.92	U
COPPER	2.37	U	COPPER	2.37	U	COPPER	2.37	U
IRON	4.73	U	IRON	7.01	В	IRON	Q18	В
MAGNESIUM	23.83	U	MAGNESIUM	23.83	U	MAGNESIUM	23.83	U
MANGANESE	0.58	U	MANGANESE	0.58	U	MANGANESE	0.58	U
NICKEL	10.17	U	NICKEL	10.17	U	NICKEL	10.17	U
POTASSIUM	472.00	U	POTASSIUM	472.00	U	POTASSIUM	472.00	U
SILVER	2.45	U	SILVER	-3.25	В	SILVER	2.45	U
SODIUM	24.57	U	SODIUM	24.57	U	SODIUM	24.57	U
VANADIUM	5.17	U	VANADIUM	5.17	U	VANADIUM	5.17	U
ZINC	1.21	U	ZINC	(F.41)	В	ZINC	1.21	В

3A INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

	Concentration					
SAMPLE:	ССВ		SAMPLE: CCB			
File: BTB13A	Feb 13, 2003	17:18	File: BTB13A Feb 13, 2003	18:25		
Analyte	Result	C	Analyte Result	С		
ALUMINUM	19.25	U	ALUMINUM 31.43	В		
BARIUM	0.40	U	BARIUM 0.40	U		
BERYLLIUM	0.32	U	BERYLLIUM 0.33	В		
CADMIUM	2.59	Ų	ADMIUM 3.03	В		
CALCIUM	18.87	В	CALCIUM 37.84	В		
COPPER	2.37	U	COPPER 2.37	U		
IRON	11.90	В	IRON 16.74	В		
MAGNESIUM	23.83/	U	MAGNESIUM 23.83	U		
MANGANESE	9.65	В	MANGANESE 0.58	U		
NICKEL	10.17	U	NICKEL 10.17	U		
POTASSIUM	472.00	U	POTASSIUM 472.00	U		
SILVER	-5.03	В	SILVER -2.60	В		
SODIUM /	24.57	U	SODIUM 28.73	В		
VANADIUM	5.17	U	VANADIUM 5.17	U		
ZINC	1.21	U	ZINC 1.21	U		

3A INITIAL AND CONTINUING CALIBRATION BLANKS

SDG Name: CTO233-4

SAMPLE:	ICB		SAMPLE:	CCB		SAMPLE: CO	В	
File: BTB25A	Feb 25, 2003	14:25	File: BTB25A	Feb 25, 2003	14:59	File: BTB25A Feb	25, 2003	16:07
Analyte	Result	C	Analyte	Result	C	Analyte	Result	С
ALUMINUM	19.25	U	ALUMINUM	19.25	U	ALUMINUM	23.56	В
BARIUM	0.40	U	BARIUM	.0.40	U	BARIUM	0.40	U
BERYLLIUM	0.32	U	BERYLLIUM	-0.33	В	BERYLLIUM	0.32	U
CADMIUM	2.59	U	CADMIUM	2.59	N	CADMIUM	2.59	U
CALCIUM	11.92	U	CALCIUM	11.92	u X	CALCIUM	11.92	U
COPPER	2.37	U	COPPER	2.37	U/	COPPER	2.37	U
IRON	4.73	U	IRON	4.73	U	iron	5.26	В
MAGNESIUM	23.83	U	MAGNESIUM	23.83	U	MAGNESIUM	23.83	U
MANGANESE	0.58	U	MANGANESE	0.58	U	MANGANESE	0.58	U
NICKEL	10.17	U	NICKEL	10.17	U	NICKEL	10.17	U
SILVER	2.45	U	SILVER	2.45	U	SILVER	2.45	U
VANADIUM	5.17	U	VANADIUM	5.17	U	VANADIUM	5.17	U
ZINC	1.21	U	ZINC /	1.21	U	ZINC	1.21	U

3A INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: CTO233-4

•			Concentr	ation Units: u	ıg/L			
SAMPLEX	CCB		SAMPLE: CO	CB /		SAMPLE:	CCB	
File: BTB25A	Feb 25, 2003	17:16	File: BTB25A F	eb 25, 2003	18:25	File: BTB25A	Feb 25, 2003	19:32
Analyte	Result	С	Analyte	Result	C	Analyte	Result	C
ALUMINUM	19.25	U	ALUMINUM /	26.14	В	ALUMINUM	19.25	U
BARIUM	0.40	d	BARIUM	0.40	U	BARIUM	0.40	U
BERYLLIUM	0.32	U	BERYLLIUM	0.32	U	BERYLLIUM	-0.32	В
CADMIUM	2.59	U	САДМІИМ	-3.47	В	CADMIUM	2.59	U
CALCIUM	13.60	В	<i>C</i> ALCIUM	11.92	U	CALCIUM	11.92	U
COPPER	2.37	U	COPPER	2.37	U	COPPER	2.37	U
IRON	6.14	В	IRON	10.26	В	IRON	4.73	U
MAGNESIUM	24.48	B	MAGNESIUM	36.79	В	MAGNESIUM		В
MANGANESE	0.58	U	MANGANESE	0.58	U	MANGANESE	0.58	U
NICKEL	10.17	U	NICKEL	10,17	U	NICKEL	10.17	U
SILVER	2.45	U	SILVER	2.45	U	SILVER	2.70	В
VANADIUM	5.17	U	VANADIUM	5.17	g	VANADIUM	5.17	U
ZINC	1.21	U	ZINC	1.28	В	ZINC	1.21	U

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Concentration Units: ug/L

SAMPLE: CCB

File: BTB25A Feb 25, 2003 20:23

Analyte	Result	C	
ALUMINUM	19.25	U	
BARIUM	0.40	U	
BERYLLIUM	-0.32	В	
CADMIUM	2.59	U	
CALCIUM	11.92	U	
COPPER	2.37	U	
IRON	4.73	U	
MAGNESIUM	23.83	U	
MANGANESE	0.58	U	
NICKEL	10.17	U	
SILVER	2.45	U	
VANADIUM	5.17	U	
ZINC	1.21	U	

3A INITIAL AND CONTINUING CALIBRATION BLANKS

_	Lab Nam	ie: Kat	ahdin Analytical Serv	ices SDG Name	: CTO233-4		
			Conc	entration Units: ug/L			
SAMPLE:	ÌСВ		SAMPLE:	CCB	SAMPLE:	CCB	
File: DTB11A	Feb 11, 2003	15:33	File: DTB11A	Feb. 11, 2003 15:46	File: DTB11A	Feb 11, 2003	16:09
Analyte	Result	С	Analyte	Result C	Analyte	Result	С
MERCURY	-0.07	В	MERCURY	-0.04 B	MERCURY	-0.04	В

Concentration Units: ug/L

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

SAMPLE:	ICB	
File: DTB11C	Feb 11, 2003	17:35
Analyte	Result	С
MERCURY	0.03	<u>В</u>

SAMPLE:	ССВ	<i>.</i> .
File: DTB110	Feb 11,2003	17:48
Analyte	Result	С
MERCURY	0:06	В
		>

SAMPLE:	CCB	
File: DTB11C	Feb 11, 2003	18:42
Analyte	Result	C

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Concentration Units: ug/L

SAMPLE: CCB

File: DTB11C Feb 11, 2003 19:36

Analyte Result C

MERCURY

Quality Control Report

Method Blank Summary Report

Company: Tetra Tech NUS, Inc.

Sdg: CTO233-4

Parameter:	Chloride
1 111 1111111111111	Cittoriac

Parameter: Chloride		
QC Batch Id: TC03WL2 Anal Method: EPA 300.0 Prep Method: N/A	Anal Date: 02/27/03 Prep Date: N/A	Blank Result: J0.209mg/L Pql: 2.0mg/L
Associated Samples: Client Sample ID	Lab Sample ID	Analysis Date
LABQC	LCS	02/27/03
LABQC	LCSD	02/27/03
LABQC	MBLANK	02/27/03
S9MW-5-0103	WT0246-1	02/27/03
S9MW-12-0103	WT0246-2	02/27/03
S9MW-12-0103	WT0246-2 DUP	02/27/03
S9MW-12-0103	WT0246-2 MS	02/27/03
S9MW-14-0103	WT0246-3	02/27/03
S9MW-15-0103	WT0246-4	02/27/03
S9MW-21-0103	WT0246-5	02/27/03
Anal Method: EPA 300.0 Prep Method: N/A Associated Samples: Client Sample ID	Anal Date: 02/28/03 Prep Date: N/A Lab Sample ID	Blank Result: J0.2074mg/L Pql: 2.0mg/L Analysis Date
	LCS	02/28/03
LABOC	LCSD	02/28/03
LABOC	MBLANK	02/28/03
LABQC S9MW-22-0103	WT0246-13	02/28/03
S9MW-24-0103	WT0246-6	02/28/03
S9MW-25-0103	WT0246-7	02/28/03
0103-DUP-06	WT0246-8	02/28/03
0103-DUP-06	WT0246-8 DUP	02/28/03
Parameter: Sulfate		

Lab Sample ID

Prep Method: N/A Associated Samples:

Client Sample ID

Analysis Date

Quality Control Report

Method Blank Summary Report (Cont.)

Company: Tetra Tech NUS, Inc.

Sdg: CTO233-4

Parameter:	Sulfate	•
Parameter:	Surjuie	;

QC Batch Id: TC03WL3 Anal Method: EPA 300.0 Prep Method: N/A	Anal Date: 02/27/03 Prep Date: N/A	Blank Result: U1.0mg/L Pql: 1.0mg/L
Client Sample ID	Lab Sample ID	Analysis Date
LABQC	LCS	02/27/03
LABQC	LCSD	02/27/03
LABQC	MBLANK	02/27/03
S9MW-5-0103	WT0246-1	02/27/03
S9MW-12-0103	WT0246-2	02/27/03
S9MW-12-0103	WT0246-2 DUP	02/27/03
S9MW-12-0103	WT0246-2 MS	02/27/03
S9MW-14-0103	WT0246-3	02/27/03
S9MW-15-0103	WT0246-4	02/27/03
S9MW-21-0103	WT0246-5	02/27/03
QC Batch Id: TC03WL6		
Anal Method: EPA 300.0	Anal Date: 02/28/03	Blank Result: U1.0mg/L
Prep Method: N/A	Prep Date: N/A	Pql: 1.0mg/L
Associated Samples:		
Client Sample ID	Lab Sample ID	Analysis Date
LABQC	LCS	02/28/03
LABQC	LCSD	02/28/03
LABQC	MBLANK	02/28/03
S9MW-22-0103	WT0246-13	02/28/03
S9MW-24-0103	WT0246-6	02/28/03
S9MW-25-0103	WT0246-7	02/28/03
0103-DUP-06	WT0246-8	02/28/03
0103-DUP-06	WT0246-8 DUP	02/28/03
Parameter: Sulfide-Iodometric		
QC Batch Id: TB10WL12 Anal Method: EPA 376.1	Anal Date: 02/06/03	Blank Result: U1.0mg/L
Prep Method: N/A	Prep Date: N/A	Pql: 1.0mg/L
Associated Samples:		
manucialu Banibica.		
Client Sample ID	Lab Sample ID	Analysis Date

Quality Control Report

Method Blank Summary Report (Cont.)

Company: Tetra Tech NUS, Inc.

Sdg: CTO233-4

Parameter: Sulfide-Iodometric

QC Batch Id: TB10WL12		
Anal Method: EPA 376.1	Anal Date: 02/06/03	Blank Result: U1.0mg/L
Prep Method: N/A	Prep Date: N/A	Pql: 1.0mg/L
Client Sample ID	Lab Sample ID	Analysis Date
LABQC	LCSD	02/06/03
LABQC	MBLANK	02/06/03
S9MW-5-0103	WT0246-1	02/06/03
S9MW-22-0103	WT0246-13	02/06/03
S9MW-12-0103	WT0246-2	02/06/03
S9MW-14-0103	WT0246-3	02/06/03
S9MW-15-0103	WT0246-4	02/06/03
S9MW-21-0103	WT0246-5	02/06/03
S9MW-24-0103	WT0246-6	02/06/03
S9MW-25-0103	WT0246-7	02/06/03
0103-DUP-06	WT0246-8	02/06/03

Parameter: Total Organic Carbon

QC Batch Id: TB07WL6 Anal Method: EPA 415.1 Prep Method: N/A	Anal Date: 02/06/03 Prep Date: N/A	Blank Result. J0.3636mg/L Pql: 1.0mg/L
Associated Samples:		
Client Sample ID	Lab Sample ID	Analysis Date
LABQC	LCS	02/06/03
LABQC	LCSD	02/06/03
LABQC	MBLANK	02/06/03
S9MW-5-0103	WT0246-1	02/06/03
S9MW-22-0103	WT0246-13	02/06/03
S9MW-12-0103	WT0246-2	02/06/03
S9MW-14-0103	WT0246-3	02/06/03
S9MW-15-0103	WT0246-4	02/06/03
S9MW-21-0103	WT0246-5	02/06/03
S9MW-24-0103	WT0246-6	02/06/03
S9MW-25-0103	WT0246-7	02/06/03
S9MW-25-0103	WT0246-7 DUP	02/06/03
0103-DUP-06	WT0246-8	02/06/03
0103-DUP-06	WT0246-8 MS	02/06/03

10 INSTRUMENT DETECTION LIMITS

Lab Name: Katahdin Analytical Services

Instrument Code: A

Instrument Name: TJA TRACE ICP

Date: 1/2/03

Analyte	CRDL	IDL	M	
ANTIMONY	8.0	1.19	P	
ARSENIC	8.0	1.56	P	
CHROMIUM	15	0.42	P	
COBALT	30	0.55	P	
LEAD	5.0	0.87	P	
SELENIUM	10	2.12	P	
THALLIUM	15	2.85	P	
TIN	100	1.99	P	

10
INSTRUMENT DETECTION LIMITS

Instrument Code: B

Instrument Name: TJA 61 ICP

Date: 1/2/03

Analyte	CRDL	IDL	M	
ALUMINUM	300	19.25	Р	
BARIUM	5.0	0.40	P	
BERYLLIUM	5.0	0.32	P	
CADMIUM	10	2.59	P	
CALCIUM	50	11.92	P	
COPPER	25	2.37	P	
IRON	100	4.73	P	
MAGNESIUM	50	23.83	P	
MANGANESE	5.0	0.58	P	
NICKEL	40	10.17	P	
POTASSIUM	1000	472.00	P	
SILVER	15	2.45	P	
SODIUM	1000	24.57	P	
VANADIUM	25	5.17	P	
ZINC	25	1.21	P	

10 INSTRUMENT DETECTION LIMITS

Lab Name: Katahdin Analytical Services

Instrument Code: D

Instrument Name: LEEMAN MERCURY ANALYZER

Date: 1/3/03

Analyte	CRDL	IDL	M
MERCURY	0.20	0.03	CV

12 ICP LINEAR RANGES

Lab Name: Katahdin Analytical Services

Instrument Code: A

Instrument Name: TJA TRACE ICP

Date: 1/17/03

Analyte	Integration Time (sec)	Linear Range	M
ALUMINUM	15.00	500000	P
ANTIMONY	15.00	10000	P
ARSENIC	15.00	10000	P
BARIUM	15.00	30000	P
BERYLLIUM	15.00	5000	P
CADMIUM	15.00	10000	P
CALCIUM	15.00	500000	P
CHROMIUM	15.00	10000	P
COBALT	15.00	10000	P
COPPER	15.00	10000	P
IRON	15.00	250000	P
LEAD	15.00	10000	P
MAGNESIUM	15.00	500000	P
MANGANESE	15.00	10000	P
NICKEL	15.00	10000	P
POTASSIUM	15.00	30000	P
SELENIUM	15.00	10000	P
SILVER	15.00	1000	P
SODIUM	15.00	200000	P
THALLIUM	15.00	10000	P
TIN	15.00	10000	P
VANADIUM	15.00	10000	P
ZINC	15.00	10000	P

12 ICP LINEAR RANGES

Lab Name: Katahdin Analytical Services

Instrument Code: B

Instrument Name: TJA 61 ICP

Date: 1/17/03

Analyte	Integration Time (sec)	Linear Range	M
ALUMINUM	8.00	500000	P
ANTIMONY	8.00	10000	P
ARSENIC	8.00	10000	P
BARIUM	8.00	30000	P
BERYLLIUM	8.00	10000	P
CADMIUM	8.00	10000	P
CALCIUM	8.00	500000	P
CHROMIUM	8.00	10000	P
COBALT	8.00	10000	P
COPPER	8.00	10000	P
IRON	8.00	250000	P
LEAD	8.00	10000	P
MAGNESIUM	8.00	500000	P
MANGANESE	8.00	10000	P
NICKEL	8.00	10000	P
POTASSIUM	8.00	500000	P
SELENIUM	8.00	10000	P
SILVER	8.00	1000	P
SODIUM	8.00	500000	P
VANADIUM	8.00	10000	P
ZINC	8.00	10000	P

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services

QC Batch ID: TB05ICW1

Matrix: WATER

SDG Name: CTO233-4

Method: P

Prep Date: 02/05/2003

Client ID	Lab Sample ID	Initial (L)	Final (L)
LCSWTB05ICW1	LCSWTB051CW1	0.05	0.05
PBWTB05ICW1	PBWTB05ICW1	0.05	0.05
FC-MW-06-0103	WT0233-001	0.05	0.05
FC-MW-20R-0103	WT0233-002	0.05	0.05
FC-MW-05-0103	WT0233-003	0.05	0.05
I8MW8-1-0103	WT0233-004	0.05	0.05
I8MW8-1-0103P	WT0233-004P	0.05	0.05
I8MW8-1-0103S	WT0233-004S	0.05	0.05
I8MW8-2-0103	WT0233-005	0.05	0.05
S1MW-7-0103	WT0233-006	0.05	0.05
0103-DUP-01	WT0233-007	0.05	0.05

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services

QC Batch ID: TB07ICW0

Matrix: WATER

SDG Name: CTO233-4

Method: P

Prep Date: 02/07/2003

Client ID	Lab Sample ID	Initial (L)	Final (L)
LC2WTB07ICW0	LC2WTB07ICW0	0.05	0.05
LCSWTB07ICW0	LCSWTB07ICW0	0.05	0.05
PBWTB07ICW0	PBWTB07ICW0	0.05	0.05
S1SW-1-0103	WT0246-010	0.05	0.05
S1SW-2-0103	WT0246-011	0.05	0.05
S1SW-3-0103	WT0246-012	0.05	0.05

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services

QC Batch ID: TB11HGW0

Matrix: WATER

SDG Name: CTO233-4

Method: CV

Prep Date: 02/11/2003

Client ID	Lab Sample ID	Initial (L)	Final (L)
LC2WTB11HGW0	LC2WTB11HGW0	0.1	0.1
LCSWTB11HGW0	LCSWTB11HGW0	0.1	0.1
PBWTB11HGW0	PBWTB11HGW0	0.1	0.1
18MW8-1-0103	WT0233-004	0.1	0.1
I8MW8-2-0103	WT0233-005	0.1	0.1
S1MW-7-0103	WT0233-006	0.1	0.1
0103-DUP-01	WT0233-007	0.1	0.1
S1SW-1-0103	WT0246-010	0.1	0.1
S1SW-2-0103	WT0246-011	0.1	0.1
S1SW-3-0103	WT0246-012	0.1	0.1

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA TRACE ICP

File Name: ATB11A

Date:

2/11/03

Lab Sample ID	Client ID D.F.	Time		Elements		
S0	1	_14:53 .Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI_ Sn
S1	1	15:00 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
AL IEC		15:09 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
E IEC		15:16 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
EC	1	15:23 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
CV .	1	15:30 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ĆB	1	15:37 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
PQL	1	15:44 Al Sb As	Ca Cr Co	Fe Pb Ma		TI Sn
RI	1	15:51 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI. Sn
CSA	1	15:57 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI. Sn
CSAB	. 1	16:04 ALSb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
:CV	1	16:11 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
СВ	1	16:17 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
77777		16:24				. ,, 511
ZZZZZ		16:31				
77777	1	16:37				
ZZZZZ	1	_16:44				· · · · · · · · · · · · · · · · · · ·
77777	1	16:51			· ,·,	
7777Z	5	16:57				· · · · · · · · · · · · · · · · · · ·
77777	1	17:04				
77777	1	17:11				
77777	1	17:17				
7777	1	17:24				
CV	1	17:31 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
СВ	1	17:38 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ZZZZZ	1	17:44				
77777	1	.17:51				
77777	1	17:58				
ZZZZZ	1	18:04				
ZZZZZ	, 1	18:11				
77777	1	18:18				
77772	1	18:24				
BWTB07ICW0	1	18:31 Sb As	Cr Co	Pb	Se	TI Sn
CSWTB07ICW0	1	18:38 Sb As	Cr.Co	. Pb	Se	TI.Sn
C2WTB07ICW0	1	18:44 Sb As	Cr Co	Pb	Se	. 11 Sn
CV	1	18:51 At Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
СВ	1	18:58 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
77777	1	19:04	<u> </u>			
77777		19:11	· · · · · · · · · · · · · · · · · · ·			
77777		19:18				
77777	1	19:25				
77777	1	19:31		• • • • • • • • • • • • • • • • • • • •		
77777	1	19:38				
77777	1	19:45				
RI	1	19:51 AL Sb As	Ca Cr Co	Fe Pb Ma	Se	ll Sn
CSA	1	19:58 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
SAB	1	20:05 ALSh As	(Ca Cr Co	Fe Ph Ma	SΔ	TI So
CV CV		20:05 Al Sb As 20:11 Al Sb As	Ca Cr Co Ca Cr Co	Fe Pb Ma Fe Pb Ma	Se Se	TI Sn

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA TRACE ICP

File Name: ATB12A

Date:

2/12/03

	Date. 2/12/					
Lab Sample ID	Client ID D.F.	Time		Element	s	
S0	1	13:58 ALSb As	Ca Cr Co	Fe Pb Ma	Se	II Sn
S1	1.	14:04 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	II. Sn
AL JEC	1	_14:14 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
E IEC	1	14:21 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
EC		14:27 Al Sb As	.Ca Cr .Co_	Fe Pb Ma	Se	Ti Sn
CV 3	1	14:34 Ál Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ICB	1	14:41 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
POL	1.	14:48_ALSb_As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
CRI	1	14:54 ALSb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ICSA	1	15:01 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ICSAB		15:08 ALSb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ccv .	1	15:14 ALSb As	Ca Cr Co	Fe Pb Ma	Se	Ti Sn
ССВ	1	15:21 Al Sb As	Ca Cr Co	Fe Pb Ma_	Se	TI Sn
777777	1	15:28				
777777	1	15:34				
77777	1	15:41				
77777	1	15:48				
77777		15:54				
77777	1	16:01				
777777	1	16:08				
77777	1	16:14				
77777	1	16:21				
777777	1	16:28				
CCV	. 1	16:34 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ССВ	1	16.41 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
777777	1	16:48				
77777	1	16:55				
777777	1	17:01				
77777	. 1	17:08				
ZZZZZZ	1_	17:17				
777777	1	17:24				-
777777	1	17:31				
PBWTB05ICW1	1.	17:37	Cr Co.	Pb.	Se	TI Sn
LCSWTB05ICW1	1 .	17:44 Sb As	Cr Co	Pb	Se	TI Sn
WT0233-001	FC-MW-06-0103 1	17:51		Pb		
CCV *	1	17:57 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
CCB	1	18:04 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TISn .
WT0233-002	FC-MW-20R-0103 1	18:11		Pb		
WT0233-003	FC-MW-05-0103 1	18:17		Pb		
WT0233-004	I8MW8-1-0103 3	_18:24	Cr Co	Pb	Se	II Sn
WT0233-004L	I8MW8-1-0103L 15	18:31 Sb As	Cr Co	Pb	. Se	TI Sn
VT0233-004P	18MW8-1-0103P 3	18:37 Sb As	Cr Co	Pb	Se	TI Sn
VT0233-004S	I8MW8-1-0103S 3	18:44 Sb As	Cr Co	Pb	Se	TI Sn
WT0233-005	I8MW8-2-0103 3	18:51 Sb As	Cr. Co	Pb	. Se	TI Sn
CRI	1	18:57 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ICSA	1	19:04 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
CSAB	1	19:11 Al Sb As	Ca Cr Co	Fe Pb Mo	Se	TI Sn
CCV	1	19:17 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	II Sn
ССВ	1	19:24 Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA TRACE ICP

File Name: ATB12A

Date: 2/12/03

Lab Sample ID	Client ID D.F.	Time			Elements		
WT0233-007	0103-DUP-01 3	19:38	Sb As	Cr Co	Pb	Se	TI Sn
WT0246-010	S1SW-1-0103 5	19:44	Sb As	Cr_Co_	Pb	Se	TL Sn
WT0246-011	S1SW-2-0103 3	19:51	Sb As	Cr Co	Pb	Se	TL Sn
WT0246-012	S1SW-3-0103 3	19:58	Sb As	.Cr. Co	Pb	Se	TI_Sn_
ZZZZZZ	1	20:04					
777777	1	20:11					
<u> </u>	1_	20:18					
777777	1	20:24					
222222	1	20:31					
CCV.	1	20:38	Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
CCB	1	20:44	Al_Sb_As	Ca Cr Co	Fe Pb Ma	Se	TI_Sn
<u> </u>	1	20:51					
ZZZZZZ		20:58					
<u> </u>	1	21:04					
777777	1	21:11					<u> </u>
<u> </u>	1.	21:18					
777777	1	21:25					·
<u> </u>	1	21:31					
777777	1	21:38					
777777	1	21:45					
<u> </u>	1	21:51					· · · · · · · · · · · · · · · · · ·
CCV	1	21:58	Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI_Sn
ССВ		22:05	Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
<u> </u>	1	22:11					
<u> </u>	1	22:18					
<u> </u>	1,	22:25					
<u> </u>	1	22:31					
<u> </u>	5	22:38					
ZZZZZZ		22:45					
777777		22:52		·······			
CRI	1	22:58	Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ICSA	1_	23:05	ALSb As	Ca Cr Co	Fe Ph Ma	Se	TI Sn
ICSAB	1	23:12	Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn
ccv	1	23:18	Al Sb As	Ca Cr Co	Fe Pb Ma	Se	
ССВ	1	23:25	Al Sb As	Ca Cr Co	Fe Pb Ma	Se	TI Sn

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA 61 ICP

File Name: BTB06A

Date: 2/6/03

Lab Sample ID Client ID	D.F.	Time				Element	<u> </u>		
S0	1	13:26 . Al	Ba Be.	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
S1.	1	13:32 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag	V_Zn
AL IEC	1	13:37 Al	Ba Be	Cd Ca	Си Ге	Ma Mn	Ni K	Aq	V Zn
FE IEC	.1_	13:46 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Aa	V Zn
CV ·	1	13:54 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Ag	V Zn
CB ·	1	14:00 AJ	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Źn
POL	1	14:05_AI	. Ba Be	Cd Ca	Cu Fe	Ma.Mn	Ni K	Aα	V Zn
CRI	1	14:11. Al	Ba Be	Cd.Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
ICSA	1	14:17 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aq	V Zn
CSAB	1	14:22 Al	Ва Ве	Cd Ca	Cu Fe	Ma Mn	Ni .K	Aa	V Zn
CCV	11_	14:28 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa_	V Zn
CCB	1 _	_14:34 Al	Ba Be	Cd Ca	Cu.Fe	Ma_Mn	Ni K	Aa	V Zn
77777	1	14:39							
777777	1	.14:45							
277777	1_	14:51							
777777	1	14:56							
77777	1	15:02							
77777	1	15:07							
777777	5	_15:13				•			-
77777	1	15:19							
777777	1	15:24			•				,
77777	1	15:30							
CCV	1	15:36 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aq	V Zn
CCB	1	15:41 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag	V Zn
77777	1	15:47		<u> </u>			13 1	, , ,	
77777	1	15:53							
77777		15:58							
777777	1	16:04							
77777	1	16:09							
777777	1	16:15							
777777	1	16:21							
777777	1	16:26	•						
77777	1	16:32							
777777	1	16:38							
ccv	1	16:43 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag	V Zn
CCB	1	16:49 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Aq	V Zn
777777	1	16:55	<u> </u>	Ou ou	OBIC	ING IVIII		Au	
77777		17:00							
77777	1	17:06							
77777	1	17:11			•		• • •		
77777	1	17:17							
77777	1	17:23							
77777	1	17:28							
CRI	1	17:34 AI	Ba Be	Cd Ca	Си Ге	Ma Mn	Ni K	Ασ	. V Zn
CSA	1	17:40 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag	V Zn
CSAB		17:45 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	
CCV	1	17:51 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Aq	V Zn V Zn
CCB	1	17:57 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	NI K	Ag	V Zn
777777	1	17:57 AI 18:02	Da DE	Vu Ua	Care	TAICH TAILT			V Zn
		10.04							

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA 61 ICP

File Name: BTB06A

Date: 2/6/03

Lab Sample ID	Client ID	D.F.	Time				Elements	i		
ZZZZZZ		11_	18:13							
777777		1	18:19	*			····			
<u> </u>		1	18:25						····	
<u> </u>		1_	18:30							
ZZZZZZ		1	18:36							. <u></u>
<u> </u>		1_	18:42							
PBWTB05ICW1		1	18:47 AI	Ba Be	Cd Ca	Cu Fe	Mn_	. Ni	Ag	V Zn
LCSWTB05ICW1		1	18:53_ Al	Ba Be	Cd Ca	Cu Fe	Mn	Ni	Aa	V Zn
CCV »		1	18:59 Al	Ba Be	Cd Ca	Cu Fe	.Ma .Mn	Ni K	Aa	V. Zn
ССВ		1_	19:04 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
<u> </u>		5	19:10							
<u> </u>		5	19:15							
777777		5	19:21							
WT0233-004	18MW8-1	-0103 5	19:27 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
WT0233-004L	I8MW8-1-0	103L 25	19:32 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Ag	. V Zn
WT0233-004P	I8MW8-1-0	103P 5	19:38_AL	Ba_Be	.Cd Ca	Cu Fe	Ma Mn	Ni. K	Aq	V Zn
WT0233-004S	18MW8-1-0	103S 5	19:44 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
WT0233-005	18MW8-2	-0103 5	19:49 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	pA	V Zn
WT0233-006	S1MW-7-	0103 5	19:55 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
WT0233-007	0103-DL	JP-01 5	20:01_AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V. Zn
CCV ®		1	20:06 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
ССВ		1_	20:12 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
ZZZZZZ		1	20:17							
<u> </u>		1	20:23							
<u> </u>		1_	20:29							· · · · · · · · · · · · · · · · · · ·
77777		1_	20:34							
777777		1	20:40							
<u> </u>		1_	20:46							
ZZZZZZ		1_	20:51							
CRI		1	20:57_AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
ICSA		1	21:03 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
ICSAB		1	21:08 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aa	V Zn
ccv		1_	21:14_AI	Ва Ве	Cd Ca	Cu Fe_	Ma Mn	Ni K	Aa	V Zn
ССВ		1_	21:20 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aq_	V Zn

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA 61 ICP

File Name: BTB10A

Date: 2/10/03

Lab Sample ID Client ID	D.F.	Time				Element	s	-	
S0	1_	15:02 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn_
S1	1	15:08 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
AL IEC	1_	15:16_Al	Ва Ве	.Cd.Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
FE IEC	1_	15:22 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aq_Na	V Zn
ICV .	. 1.	15:27. Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICB	.1.	15:33_AL	Ba Be	Cd Ca	Cu Fe	Ma Mo	Ni . K	Ag Na	V. Zn
PQL	11_	15:39 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
CRI	1	15:44 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSA	1	15:50 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni. K	Ag Na	V Zn
ICSAB	111	15:56 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V. Zn
ccv	1	16:01 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ССВ	1	16:07 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
<u> </u>	1	_16:13							
777777	1	16:18							
<u> </u>	5	16:24							
PBWTB07ICW0	1_	16:30 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	. Ag Na	V Zn
LCSWTB07ICW0	1	16:35 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
LC2WTB07ICW0	1	16:41 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	NiK	Ag Na	V Zn
777777	1	16:47							
777777	1	16:52		·					
<u> </u>	1	16:58							
777777	1	17:03							
CCV	1_	17:09 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	. V Zn
CCB	1	17:15 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
777777	5	17:20							
777777	1	17:26							
777777	1	17:32							
777777	1	17:37							
77777	1	17:43							
<u> </u>	1_	17:49							
PBWTB05ICW1	1.	17:54				Ma	К	Na	
LCSWTB05ICW1	1	18:00				Ma	К	Na	
<u> </u>	1	18:05							
727777	5 .	. 18:11							
CCV	1_	18:17 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aq Na	V Zn
CCB	1_	18:22 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni. K	Ag Na	V Zn
777777	1	18:28							
<u> </u>	1_	18:34							
777777	1	. 18:39							
777777	1_	18:45							<u></u>
777777	1_	18:51						 	
777777	1	18:56							
<u> </u>	1_	19:02						= .	
CRI	1.	19:07 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSA	1_	_19:13. Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V. Zn
ICSAB	1	19:19 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ccv	1_	19:24 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Ag Na	V Zn
ССВ	1	19:30 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ao Na	V Zn

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA 61 ICP

File Name: BTB11A

Date:

2/11/03

	Date:	2/11/0)3			Ī	viemou:	r		
Lab Sample ID	Client ID	D.F.	Time				Element	s		
<u>\$0</u>		1_	13:45 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	VZn
<u>S1</u>		1_	13:50 Al	Ba Be	Cd Ca	Cu Fe	Mg Mn	Ni K	Ag Na	V Zn
AL IEC		1_	13:56 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
FE IEC		1_	14:04 AI	Ba Be	Cd_Ca_	Cu Fe	Ma Mn	Ni_K	Ag Na	V Zn
ICV E		1_	14:12 ☆ Al	Ва Ве	Cd Ca	Cu Fe	Ma_Mn	Ni K	Ag Na	V Zn
ICB		1	14:18 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
POL		1_	14:24 AI	Ba Be	. Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
CRI		1	14:30 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSA		1_	14:35 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSAB		1_	14:41 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Aq Na	V Zn
CCV		1_	14:46 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ССВ		1_	14:52 AI	Ba Be	Cd Ca	Cu Fe	Ma Ma	Ni K	Ag Na	V Zn
ZZZZZZ		1_	_14:58							
ZZZZZZ		1_	15:03	-		•				
ZZZZZZ		1_	_15:09							
ZZZZZZ		5	15:15							
777777		1	15:20							
ZZZZZZ		1	15:26							
<u> </u>		1	15:32							
777777		1	15:37							
ZZZZZZ		1	15:43							
ZZZZZZ		1	15:48					•		
ccv		1	15:54 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ССВ		1	16:00 AI	Ba Be	Cd Ca	Cu Fe	Ma.Mn	Ni K	Ag Na	. V . Zn
ZZZZZZ		5	16:05							
ZZZZZZ		1	16:11		·					
		1	16:17							
ZZZZZZ		1	16:22							
ZZZZZZ		1	16:28							
777777		1	16:34					- <u>-</u> -		
ZZZZZZ		2	16:39							
CRI		1	16:45 AI	_Ba_Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSA		1	16:50 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aq.Na	V Zn
ICSAB.		1	_16:56_Al_	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni. K	Ag Na	V Žn
CCV		1	17:02 [⊕] Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	. Ni K	Ag Na	V Zn
ССВ		1	17:07 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
 227272		10	17:13							
777777			17:19	•						
777777		1_	17:24							
WT0233-004	.18MW8-1-		17:30	-			-		Na	
WT0233-004L	I8MW8-1-01		17:35		···				Na Na	
WT0233-004P	I8MW8-1-01		17:41	 					Na Na	
WT0233-004S	I8MW8-1-01								Na	
WT0233-0040 WT0233-005	I8MW8-2-		17:52	•					. Na	
WT0233-005 WT0233-006	S1MW-7-(17:58						Na Na	· · · · · · · · · · · · · · · · · · ·
WT0233-000 WT0233-007	0103-DU								Na	
CCV -	0103-00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	18:09 At	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
CCB		1	18:15 At	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ad Na	V Zn
WT0246-010	S1SW-1-0		18:15 AI	Ba Be	Cd Ca	Cu Fe	IVICE IVIII	Ni K	Ad Na	V Zn
		0103 3		Da De	- Cu Ca	<u> </u>	Ma Ma		Au	V ZIL
WT0246-010	S1SW-1-0	VIU3 10	10:20				Ma_Mn			

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA 61 ICP

File Name: BTB11A

Date: 2

2/11/03

Lab Sample ID	Client ID D.F	. Time				Element	s		
WT0246-011	S1SW-2-0103 10	18:32		Са		Ма	К		
WT0246-012	S1SW-3-0103 10	18:37	<u>, , , , , , , , , , , , , , , , , , , </u>	Ca		Ма		 	
ZZZZZZ		18:43						· ·	
777777	1	18:49							
ZZZZZZ	1	18:54							
<u> </u>	1	19:00					· -		
<u> </u>	1	19:06						··	
777777	1	19:11							
CCV 2		19:17 -AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aq Na	V_Zn
ССВ	1	19:23 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Ao Na	V Zn
ZZZZZZ	1	19:28							
777777	1	19:34				· · ·			
<u> </u>	1	19:39							
ZZZZZZ	1	19:45							
<u> </u>		19:51							
777777	1	19:56	······································						
<u> </u>	1	20:02							
CRI	1	20:08_AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSA	1	20:13 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ao Na	V Zn
ICSAB	1	20:19 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ccv	1	20:25 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ССВ	1	20:30 _Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V_Zn

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA 61 ICP

File Name: BTB13A

Date:

2/13/03

Lab Sample 1D	Client ID	D.F.	Time	<u></u>			Element	s		
S0		1	13:50 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Ag Na	VZn
S1		1	13:56 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
AL IEC		1	14:01 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
FE IEC		1	14:10 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Ag Na	V Zn_
ICV -		1	14:18 ⁵ Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICB		1_	14:24 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
POL		1	14:29. Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
CRI		1	14:35 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	. Ao Na	V .Zn
ICSA		1_	14:40 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSAB		1_	14:46 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
CCV.*		1	14:52 [™] Al	Ва Ве	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V _ Zn
ССВ	<u> </u>	1	15:02 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni_K	Ag Na	V Zn
<u> </u>		1	15:08							
<u> 777777 </u>		1	15:14							
<u> </u>		1	15:19							
<u> </u>		1_	15:25							
<u> </u>		1	15:31							
WT0246-010		S1SW-1-0103 100	15:36						Na	
WT0246-011		S1SW-2-0103 100	15:42	· · · · · · · · · · · · · · · · · · ·		_			Na	- ·
WT0246-012		S1SW-3-0103 3	15:47 Al	Ba Be	Cd	Cu Fe	Mn .	Ni K	Aa	V Zn
WT0246-012		S1SW-3-0103 100	15:53						Na	
777777		1	15:59							
ccv		1_	16:04 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn_
ССВ		1_	16:10 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ZZZZZZ		11	16:16				<u></u>			
ZZZZZZ		1	16:21							
<u> </u>		5	16:27	<u> </u>						
<u> </u>		1.	16:33							
777777		1	16:38							
<u> </u>		1_	16:44							
<u> </u>		1	16:49							
ZZZZZZ		1	16:55							
<u> </u>		1	17:01							
ZZZZZZ		1_	17:06							
CCV		1	17:12 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
CCB		1_	17:18 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Aq Na	V Zn
22222		1	17:23							
ZZZZZZ		1_	17:29							
<u> </u>		. 1	17:35							
<u> </u>		5	17:40			 -	. 			
ZZZZZZ		1	17:46							
ZZZZZZ		1	17:51							
ZZZZZZ		1	17:57							
CRI.		11	18:03 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSA		1	18:08 Ał	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ICSAB		1	18:14 AL	Ba Be	_Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
CCV		1	18:20 AI	Ba Be	Cd Ca	_Cu Fe	Ma Mn	Ni K	Ag Na	V Zn
ССВ		1	18:25 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni K	Ag Na	V Zn

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA 61 ICP

File Name: BTB25A

Date:

2/25/03

	Date.	2/25/	33					•		
Lab Sample ID	Client 1D	D.F.	Time				Element	s		
S0		1	13:51 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Ασ	V Zn
S1		. 1	13:57 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Αα	V Zn
AL IEC		1_	14:03_AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni.	Aa	V Zn
E IEC		1.	.14:11 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
CV 3		1_	14:19" AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
СВ		1	14:25 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
POL		1	14:31 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
CRI		1	14:36 Al	Ва Ве	Cd Ca	Cu Fe	Ma Mn	Ni	Aq	V Zn
ICSA		1	14:42 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni.	Αα	V Zn
CSAB		1	14:48 Al.	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V_Zn
ccv		1	14:53 AL	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
ССВ		1	14:59 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Ag	. V Žn
777777		1 _	15:04							
77777		1	15:10							
777777		1.	15:16							
77777		50	15:21							
77777		5	15:27							
77777		25	15:33							
77777		5.	15:38							
77777		5	15:44							
77777		5	15:50							
777777		5	15:56							
CCV		1	16:02 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Ag	V Zn
ССВ		1	16:07 AI	Ba Be	Cd Ca	Cu Fe	Ma_Mn	. Ni .	Aa	V Zn
77777		1	16:13							
77777		2	16:19	-					•	-
777777		. 50	16:24							
77777		5 :			•					
77777		5	16:36							
77777		1	16:42							
77777		1	16:48							
77777		1	16:54							
777777		1	16:59							
777777		1	17:05							
CCV		1	17:11 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni.	. Aa	V Zn
CCB		1	17:16 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Ag	V_Zn
77777Z		1	17:23		<u> </u>	Ourc	THE WALL		Ας	V. ZII
777777		1	17:28							
777777		1	17:34							
777777		1	17:39							· · · · · · · · · · · · · · · · · · ·
777777		1	17:45							
		1	17:51	***						
777777		1	17:56							
ZZZZZZ			18:02 AI	Ва Ве	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
CRI		1	18:02 AI 18:08 AI		Cd Ca	Cu Fe		Ni Ni	Ag	V Zn
ICSA ICSAR				Ba Be		Cu Fe	Ma Ma		Aa Aa	V Zn
ICSAB		1_	18:13 AL	Ba Be	Cd Ca		Ma Ma	Ni		· · · - ·
CCV		1_	18:19 Al	Ba Be	Cd Ca	Cu Fe	Ma_Mn	Ni	Aa .	V Zn
CCB		1	18:25 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
<u> </u>			18:30							
<u> </u>		1_	18:36				 -			···

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: TJA 61 ICP

File Name: BTB25A

Date:

2/25/03

Lab Sample ID	Client ID	D.F.	Time				Elements	5		
ZZZZZZ		1	18:41							
<u> 777777</u>		. 1	18:47							
<u> </u>		1_	18:53							
<u> </u>		_1_	18:58							
<u> </u>		1	19:04							
77777		_1_	19:10							
ZZZZZZ		_1_	19:15							
ZZZZZZ		_1_	19:21							
CCV		1_	19:26 ⁻ Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
ССВ		_1_	19:32 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
<u> 777777</u>		_1_	19:38							
WT0246-011	S1SW-2-0103	5	19:43 AI	Ba Be	Cd	Cu Fe	Mn	Ni	Aq	V Zn
<u> </u>		. 50	19:49							
<u> </u>		50	19:55							
CRI		_1_	20:00 Ai	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
ICSA	- · · · · · · · · · · · · · · · · · · ·	_1_	20:06 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
ICSAB		1	20:12 Al	Ba Be	Cd Ca _	Cu Fe	Ma Mn.	Ni	Aa	V Zn
CCV ®		1	20:17 Al	Ba Be	Cd Ca	Cu Fe	Ma Mn	Ni	Aa	V Zn
CCB		1	20:23 AI	Ba Be	Cd Ca	Cu Fe	Ma Mn.	Ni	Aa	V Zn

Lab Name: Katahdin Analytical Services

SDG Name: CTO233-4

Instrument ID: LEEMAN MERCURY A

File Name: DTB11A

Date: 2/11/03

Method: CV

Lab Sample ID Client ID	D.F. Time	Elements	
Std1	15:01	На	
Std2	15:05	Ha	
Std3	15:10	На	
Std4	15:15	Ha	
Std5	15:19	Hg	
Std6	15:24	Ha	
ICV	1 15:28	Ha	
ICB	1 15:33		
CRA	1 15:37	Ηα	
ccv	1 15:42	На	
ССВ	.1 15:46	Ho	
777777	1 15:51		
PBWTB11HGW0	1 . 15:55	Но	
LCSWTB11HGW0	1 16:00	На	
CCV	1 16:04	На	
ССВ	1 16:09	Ha	

Lab Name: Katahdin Analytical Services SDG Name: CTO233-4

Instrument ID: LEEMAN MERCURY A File Name: DTB11C

Date: 2/11/03 **Method:** CV

Lab Sample ID	Client ID D.F	. Time	Elements
Std1		17:03	На
Std2		17:07	Ha Ha
Std3		17:12	Ha
Std4		17:16	На
Std5		17:21	Ha
Std6		17:25	Ha
ICV *	1	17:30 -	На
ICB	1	17:35	На
CRA _	1	17:39	На
CCV	1	17:44	На
ССВ	1		На
LC2WTB11HGW0		17:53	На
777777	1	17:57	
777777	1	18:02	
777777		18:06	
222222	1	18:11	
777777		18:15	
ZZZZZZ	1	18:20	
777777		18:24	
777777	1	18:29	
777777	1	18:33	
CCV	1	18:38	Ha_
ССВ	1	18:42	На
WT0233-004	I8MW8-1-0103 1	18:47	Ha
WT0233-005	I8MW8-2-0103 1	18:51	На
WT0233-006	S1MW-7-0103 1	18:56	На
WT0233-007	0103-DUP-01 1	19:00	На
WT0246-010	S1SW-1-0103 1	19:05	Ha
WT0246-011	S1SW-2-0103 1	19:09	Ha
WT0246-012	S1SW-3-0103 1	19:14	Ha
777777		19:18	
777777	1	19:23	
777777	1	19:27	
ccv	1	19:32°	Ha
ССВ	1	19:36	Ha

FIELD DUPLICATE PRECISION

ANALYTE	0103-DUP-01	S1MW-7-0103	RPD	DIFFERENCE
Aluminum	96.3U	96.3U	#VALUE!	#VALUE!
Antimony	3.6U	4	#VALUE!	#VALUE!
Arsenic	8.2	11.6	34.34	3.4
Barium	26.2	23.4	11.29	2.8
Beryllium	1.6U	1.6U	#VALUE!	#VALUE!
Cadmium	13U	13U	#VALUE!	#VALUE!
Calcium	582000	576000	1.04	6000
Chromium	2.2	2.3	4.44	0.1
Cobalt	1.7U	1.7U	#VALUE!	#VALUE!
Copper	11.9U	11.9U	#VALUE!	#VALUE!
Iron	156	111	33.71 🖯	
Lead	2.6U	2.6U	#VALUE!	#VALUE!
Magnesium	1110000	1100000	0.90	10000
Manganese	2.9U	2.9U	#VALUE!	#VALUE!
Mercury	0.1	0.09	10.53	0.01
Nickel	50.9U	50.9U	#VALUE!	#VALUE!
Potassium	347000	348000	0.29	1000
Selenium	6.4U	6.4U	#VALUE!	#VALUE!
Silver	12.3U	12.3U	#VALUE!	#VALUE!
Sodium	8200000	8410000	2.53	210000
Thallium	8.6U	8.6U	#VALUE!	#VALUE!
Tin	6U	6U	#VALUE!	#VALUE!
Vanadium	25.9U	25.9U	#VALUE!	#VALUE!
Zinc	6.1U	11	#VALUE!	#VALUE!

ANALYTE	0103-DUP-06	S9MW-14-0103	RPD	DIFFERENCE
Chloride	760	810	6.37	50
Sulfate	180	170	5.71	10
Sulfide	11	11	0.00	0
Total Organic Carbon	13	13	0.00	0

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO: C. BRYAN DATE: APRIL 11, 2003

FROM: BERNARD F SPADA III COPIES: DV FILE/REV 1

SUBJECT: ORGANIC DATA VALIDATION- VOC/SVOC/PAH/PEST/TPH

CTO 233, NAS KEY WEST

SDG 2334

SAMPLES: 17/Aqueous

0103-DUP-01*# FC-MW-05-0103[®] 0103-DUP-06 FC-MW-06-0103[®] FC-MW-20R-0103[®] S1MW-5-0103 S1MW-7-0103*# S9MW-14-0103 S9MW-12-0103 S9MW-15-0103 S9MW-21-0103 S9MW-22-0103 S9MW-24-0103 S9MW-25-0103 S9MW-5-0103 S1SW-1-0103* TB-013103 TB-020303

S1SW-2-0103*#

OVERVIEW

The sample set for CTO 233, NAS Key West, SDG 2334 consists of thirteen (13) environmental aqueous samples, two (2) trip blanks, and two (2) field duplicates. All samples except the "S1SW" samples were analyzed for volatile organic compounds (VOC). The samples denoted with an ampersand ([®]) were analyzed for polynuclear aromatic hydrocarbons (PAH), ethylene dibromide (EDB), and total petroleum hydrocarbons (TPH). The samples denoted with an asterisk (*) were analyzed for Appendix IX semivolatile organic compounds (SVOC). The samples denoted with a pound sign ([#]) were analyzed for pesticides (PEST) also. The field duplicate pairs included in this SDG are (0103-DUP-01 / S1MW-7-0103) and (0103-DUP-06 / S9MW-14-0103).

The samples were collected by Tetra Tech NUS on January 31 and February 1-3, 2003 and analyzed by Katahdin Analytical Services. All analyses were conducted in accordance with Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria using SW-846 Methods 8260B, 8081A, and 8270C, EPA Method 504.1, and Florida PRO analytical and reporting protocols. The data contained in this SDG were validated with regard to the following parameters:

- Data completeness
- Holding times
 - Initial and continuing calibration
 - Laboratory method and field quality control blank results
 - Field Duplicate Precision
 - Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Problems affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified Analytical results are presented in Appendix A.

The text of this report is formulated to address only gross non-compliances resulting in the rejection of data and the elimination of false positives.

Volatile

The initial and continuing calibrations performed on the GCMS-F instrument on February 5 and February 7 were below the 0.05 relative response factor (RRF) quality control criteria for 2-chloroethylvinyl ether. The non-detected results for 2-chloroethylvinyl-ether were rejected (UR) in samples FC-MW-05-0103, FC-MW-06-0103, and FC-MW-20R-0103.

The initial calibration performed on the GCMS-S instrument on November 21 was below the 0.05 RRF quality control criteria for acrolein and propionitrile. All non-detected results for the aforementioned compounds were rejected (UR) in all samples except FC-MW-05-0103, FC-MW-06-0103, and FC-MW-20R-0103.

The continuing calibration performed on the GCMS-S instrument on February 7 at 11:31 was below the 0.05 RRF quality control criteria for acetone, isobutyl alcohol, acetonitrile, and 1,4-dioxane. All non-detected results for the aforementioned compounds were rejected (UR) in samples TB-013103, TB-020303, S1MW-7-0103, 0103-DUP-01, 0103-DUP-06, S9MW-12-0103, S9MW-14-0103, S9MW-15-0103, S9MW-22-0103, S9MW-24-0103, and S9MW-25-0103. The positive result for acetone in sample S9MW-24-0103 was qualified as estimated (J).

The continuing calibration performed on the GCMS-S instrument on February 7 at 11:31 exceeded the 25% difference (and was >50%) quality control criteria for 2-chloroethylvinyl ether. No qualifications were made on this basis.

The continuing calibration performed on the GCMS-S instrument on February 10 at 12:25 exceeded the 25% difference (and was >50%) quality control criteria for 4-methyl-2-pentanone, 2-hexanone, and acrolein. No qualifications were assigned on this basis.

The MS/MSD of sample S9MW-5-0103 was below the percent recovery quality control criteria (and was <10%) for chloroprene. The non-detected result for chloroprene in sample S9MW-5-0103 was rejected (UR).

The continuing calibration performed on the GCMS-S instrument on February 10 at 12:25 the 0.05 RRF quality control criteria for 2-chloroethylvinyl ether, isobutyl alcohol, acetonitrile, and 1,4-dioxane. All non-detected results for the aforementioned compounds were rejected (UR) in samples S1MW-5-0103 and S9MW-21-0103.

The continuing calibration for 2-chloroethylvinyl ether performed on the GCMS-S instrument on February 10 at 12:25 was incorrectly identified in the data package. The laboratory was requested to re-submit the continuing calibration. The re-submittal did not have the CCAL RRF re-calculated on it. The laboratory was again requested to resubmit the CCAL. The laboratory provided the CCAL upon request.

The following compounds were detected in the method blank:

	Maximum	Blank
Compound	<u>Concentration</u>	Action Level
Methylene Chloride	0.9 μg/L	9.0 μg/L
m+p-Xylene	0.2 μg/L	1.0 μg/L
total-Xylene	0.2 μg/L	1.0 μg/L

Sample aliquot and dilution factors were taken into consideration when applying the blank action levels. Positive results for the aforementioned compounds below the blank action level were qualified as non-detected, (U). Field quality control blanks were not qualified due to laboratory blank contamination.

Semivolatile

The initial calibration performed on March 3 was below the 0.05 RRF quality control criteria for kepone. All results for kepone were rejected (UR).

The initial calibration performed on March 3 exceeded the 30% RSD (and was >50%) quality control criteria for famphur and p-phenylenediamine. No qualifications were made on this basis.

The continuing calibration performed on March 3 at 17:29 was below the 0.05 RRF quality control criteria for diallate, 4-nitroquinoline-1-oxide, and kepone. The results for the aforementioned compounds were rejected (UR) in samples S1SW-2-0103 and S1MW-7-0103.

The continuing calibration performed on March 3 at 17:29 exceeded the 25% difference (and was >50%) quality control criteria for p-phenylenediamine. No qualifications were made on this basis.

The continuing calibration performed on March 4 at 14:12 was below the 0.05 RRF quality control criteria for diallate, 4-nitroquinoline-1-oxide, and kepone. The results for the aforementioned compounds were rejected (UR) in samples S1SW-1-0103 and 0103-DUP-01.

The continuing calibration performed on March 4 at 14:12 exceeded the 25% difference (and was >90%) quality control criteria for famphur. The results for famphur were qualified as estimated (UJ) in samples S1SW-1-0103 and 0103-DUP-01.

<u>PAH</u>

The continuing calibration performed on March 5 at 09:33 exceeded the 25% difference (and was >50%) quality control criteria for 1-methylnaphthalene and indeno(1,2,3-cd)pyrene. No qualifications were made on this basis.

All surrogates had 0% recovery in sample FC-MW-20R-0103. No qualifications were made on this basis because the sample was analyzed at a dilution.

Sample FC-MW-20R-0103 was analyzed at a dilution because the concentration of target analytes present exceeded the linear calibration range of the instrument. The sample was not analyzed un-diluted. This accounts for the elevated reporting limits for all non-detected compounds in the aforementioned sample.

Sample FC-MW-05-0103 was re-analyzed because the internal standard perylene-d12 exceeded the percent recovery quality control criteria. The re-analysis exceeded the percent recovery quality control criteria for three internal standards. The original analysis was used for validation. No qualifications were made on this basis.

Pesticide

The continuing calibration analyzed on February 20 at 02:08 exceeded the 15%D (and was >30%D) quality control criteria for endrin ketone on the RTX-CLP1 column. No qualifications were made on this basis because the RTX-CLP2 column was <30%.

TPH

No qualifications were assigned to this fraction.

Additional Comments

Positive results below the reporting limit were qualified as estimated (J) due to uncertainty near the detection limit.

EXECUTIVE SUMMARY

Laboratory Performance Issues: Qualifications were made based on calibration non-compliances, method blank contamination, and MS/MSD non-compliances.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the EPA Functional Guidelines for Organic Data Validation (10/99) and the NFESC guidelines. The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC guidelines and the Quality Assurance Project Plan (QAPP)."

Berney Types do TT
Tetra Tech NUS

Bernard F. Spada III Chemist/Data Validator

TetraTech NUS

Joseph A. Samchuck

Data Validation Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

L = Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

N01 = Internal Standard Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCD% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is less than sample activity

SDG: 2334

4202

MEDIA: WATER DATA

FRACTION: O

nsample 0103-DUP-01 samp_date 1/31/2003 lab_id WT0233-7 qc_type NM units UG/L Pct_Solids

DUP OF

0

21MM 7 0100

nsample 0103-DUP-01 samp_date 1/31/2003 lab_id WT0233-7 qc_type NM units UG/L Pct_Solids 0

DUP_OF: S1MW-7-0103

nsample 0103-DUP-06 samp_date 2/1/2003 lab_id WT0246-8 qc_type NM units UG/L Pct_Solids 0

DUP_OF: S9MW-14-0103

DUP_OF:	S1MW-7-01	03	
Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	U	
1,1,1-TRICHLOROETHANE	5	U	-
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	5	Ü	
1,2,3-TRICHLOROPROPANE	5	Ü	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	Ų	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	
1,4-DIOXANE	100	UR	С
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	U	
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	UR	С
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	U	
BENZENE	5	U	
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	U	
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	U	

Parameter	Result	Val Qual	Qual Code
CHLOROFORM	5	U	_
CHLOROMETHANE	5	U	
CHLOROPRENE	10	U	
CIS-1,2-DICHLOROETHENE	5	U	
CIS-1,3-DICHLOROPROPENE	5	U	
DIBROMOMETHANE	5	U	
DICHLORODIFLUOROMETHANE	5	U	
ETHYL METHACRYLATE	10	U	
ETHYLBENZENE	5	U	*
ISOBUTANOL	100	UR	С
M+P-XYLENES	5	U	
METHACRYLONITRILE	50	U	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	U	
METHYLENE CHLORIDE	5	U	
O-XYLENE	5	U	
PENTACHLOROETHANE	10	U	
PROPIONITRILE	50	UR	C
STYRENE	5	U	
TETRACHLOROETHENE	5	U	
TOLUENE	5	U	
TOTAL 1,2-DICHLOROETHENE	5	U	
TOTAL XYLENES	5	U	-
TRANS-1,2-DICHLOROETHENE	5	U	
TRANS-1,3-DICHLOROPROPENE	5	U	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	
TRICHLOROETHENE	5	u	
TRICHLOROFLUOROMETHANE	5	U	
VINYL ACETATE	5	<u>_</u>	
VINYL CHLORIDE	2	U	

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	U	
1,1,1-TRICHLOROETHANE	5	U	
1,1,2,2-TETRACHLOROETHANE	5	Ü	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	1	J	F
1,2,3-TRICHLOROPROPANE	5	Ü	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	
1,4-DIOXANE	100	UR	C
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	U	
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	UR	С
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	U	_
BENZENE	1	J	Р
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	U	
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	U	

Page 1 of 12 [3/24/2003 2:12:39 PM]

4202

MEDIA: WATER DATA FRACTION: O

nsample samp date

SDG: 2334

0103-DUP-06 2/1/2003

lab_id qc_type units

WT0246-8 NM UG/L

Pct Solids DUP OF:

CHLOROFORM

CHLOROPRENE

CHLOROMETHANE

DIBROMOMETHANE

ETHYLBENZENE ISOBUTANOL

M+P-XYLENES

METHYL IODIDE

PROPIONITRILE

TOTAL XYLENES

TRICHLOROETHENE

VINYL ACETATE

VINYL CHLORIDE

O-XYLENE

STYRENE

TOLUENE

ETHYL METHACRYLATE

METHACRYLONITRILE

METHYL METHACRYLATE

METHYLENE CHLORIDE

PENTACHLOROETHANE

TETRACHLOROETHENE

TOTAL 1,2-DICHLOROETHENE

TRANS-1,2-DICHLOROETHENE

TRANS-1,3-DICHLOROPROPENE

TRANS-1,4-DICHLORO-2-BUTENE

TRICHLOROFLUOROMETHANE

CIS-1,2-DICHLOROETHENE

CIS-1,3-DICHLOROPROPENE

DICHLORODIFLUOROMETHANE

Parameter

Ω

S9MW-14-0103

Val

Qual

Result Qual Code U 5 U 10 1300 U 5 U 10 100 UR С 5 U 50 U 10 U 10 IJ 5 Ũ 5 10 U 50 UR С 5 5 5 U 5300 5 U Α 4000 5 U

U

U

V

U

U

10

5

5

nsample FC-MW-05-0103 samp_date 1/31/2003 lab id WT0233-3 qc_type NM units UG/L Pct_Solids 0

DUP_OF:

	T	Val	Qual
Parameter	Result	Qual	Code
1,1,1-TRICHLOROETHANE	1	U	
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROETHANE	1	U	
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	U	
1,2-DIBROMOETHANE	0.02	U	
1,2-DICHLOROETHANE	1	U	 -
1,2-DICHLOROPROPANE	1	U	
2-CHLOROETHYL VINYL ETHER	1	UR	C
BENZENE	1	U	
BROMODICHLOROMETHANE	1	U	
BROMOFORM	1	U	-
BROMOMETHANE	2	U	
CARBON TETRACHLORIDE	1	. U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	U	
CHLOROETHANE	2	U	
CHLOROFORM	1	U	
CHLOROMETHANE	2	Ú	-
CIS-1,2-DICHLOROETHENE	1	Ú	
CIS-1,3-DICHLOROPROPENE	1	U	
ETHYLBENZENE	1		
M+P-XYLENES	4		_
METHYL TERT-BUTYL ETHER	2	U	
METHYLENE CHLORIDE	2	U	,
O-XYLENE	1		
TETRACHLOROETHENE	1	U	
TOLUENE	1		
TOTAL 1,2-DICHLOROETHENE	2	U	-
TOTAL XYLENES	5		

nsample FC-MW-05-0103 samp_date 1/31/2003 lab_id WT0233-3 qc_type NM units UG/L Pct_Solids 0 DUP_OF:

Parameter	Result	Val Qual	Qual Code
TRANS-1,2-DICHLOROETHENE	1	U	
TRANS-1,3-DICHLOROPROPENE	1	U	
TRICHLOROETHENE	1	J	Р
VINYL CHLORIDE	2	U	

Page 2 of 12 [3/24/2003 2:12:39 PM]

SDG: 2334 MEDIA: WATER DATA FRACTION: O

4202

nsample FC-MW-06-0103

samp_date 1/31/2003 lab_id WT0233-1 qc_type NM

units UG/L Pct_Solids 0

DUD OF

CHLOROMETHANE

CIS-1,2-DICHLOROETHENE

CIS-1,3-DICHLOROPROPENE

METHYL TERT-BUTYL ETHER

TOTAL 1,2-DICHLOROETHENE

METHYLENE CHLORIDE

TETRACHLOROETHENE

CHLOROFORM

ETHYLBENZENE M+P-XYLENES

O-XYLENE

TOLUENE

TOTAL XYLENES

DUP_OF:			
Parameter	Result	Val Qual	Qual Code
1,1,1-TRICHLOROETHANE	1	U	
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROETHANE	1	U	
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	U	
1,2-DIBROMOETHANE	0.02	U	
1,2-DICHLOROETHANE	1	U	
1,2-DICHLOROPROPANE	1	U	
2-CHLOROETHYL VINYL ETHER	1	UR	С
BENZENE	1	U	
BROMODICHLOROMETHANE	1	U	
BROMOFORM	1	U	
BROMOMETHANE	2	U	
CARBON TETRACHLORIDE	1	U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	U	
CHLOROETHANE	2	U	
		- 1	- 1

1

2

3

2

2

5

Ũ

U

U

U

U

nsample	FC-MW-06-0103
samp_date	1/31/2003
lab_id	WT0233-1
qc_type	NM
units	UG/L
Pct_Solids	0

DUP_OF:

Parameter	Result	Val Qual	Qual Code
TRANS-1,2-DICHLOROETHENE	1	U	
TRANS-1,3-DICHLOROPROPENE	1	U	
TRICHLOROETHENE	1	U	
VINYL CHLORIDE	2	U	

nsample FC-MW-20R-0103 samp_date 1/31/2003 lab_id WT0233-2 qc_type NM units UG/L Pct_Solids 0 DUP_OF:

Parameter	D	Val	0
	Result		Qual Code
1,1,1-TRICHLOROETHANE	1	U	
1,1,2,2-TETRACHLOROETHANE	1	U	
1,1,2-TRICHLOROETHANE	1	υ	
1,1-DICHLOROETHANE	1	U	
1,1-DICHLOROETHENE	1	U	
1,2-DIBROMOETHANE	0.02	U	 -
1,2-DICHLOROETHANE	1	Ü	
1,2-DICHLOROPROPANE	1	U	
2-CHLOROETHYL VINYL ETHER	1	UR	C
BENZENE	1	U	
BROMODICHLOROMETHANE	1	U	
BROMOFORM	1	U	
BROMOMETHANE	2	U	
CARBON TETRACHLORIDE	1	U	
CHLOROBENZENE	1	U	
CHLORODIBROMOMETHANE	1	U	,
CHLOROETHANE	2	U	
CHLOROFORM	1	U	
CHLOROMETHANE	2	U	
CIS-1,2-DICHLOROETHENE	1	U	
CIS-1,3-DICHLOROPROPENE	1	U	
ETHYLBENZENE	88		
M+P-XYLENES	19		
METHYL TERT-BUTYL ETHER	2	U	
METHYLENE CHLORIDE	2	U	
O-XYLENE	1	U	
TETRACHLOROETHENE	1	U	
TOLUENE	4		
TOTAL 1,2-DICHLOROETHENE	2	Ü	
TOTAL XYLENES	19		

Page 3 of 12 [3/24/2003 2:12:39 PM]

4202

MEDIA: WATER DATA

FRACTION: O

nsample

SDG: 2334

FC-MW-20R-0103

samp_date lab_id

1/31/2003

qc_type

WT0233-2 NM

UG/L

0

units Pct_Solids q

2/1/2003

S1MW-5-0103

nsample

lab_id

units

qc_type

Pct_Solids

samp_date

nsample

samp_date

DUP_OF:

Val Qual Parameter Result Qual Code TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE С TRICHLOROETHENE U VINYL CHLORIDE 2 U

lab_id	WT0246-9	
qc_type	NM	
units	UG/L	
Pct_Solids	0	
DUP_OF:		
	Val	Q

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	- U	
1,1,1-TRICHLOROETHANE	5	U	
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	5	U	
1,2,3-TRICHLOROPROPANE	5	U	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	
1,4-DIOXANE	100	UR	C
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	UR	C
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	Ü	
ACETONE	10	U	
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	U	
BENZENE	5	U	
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	U	_
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	Ü	
CHLORODIBROMOMETHANE	5	Ú	
CHLOROETHANE	5	U	

DUP_OF:			
Parameter	Result	Val Qual	Qual Code
CHLOROFORM	5	Ū	-
CHLOROMETHANE	5	Ū	
CHLOROPRENE	10	<u>_</u>	
CIS-1,2-DICHLOROETHENE	5	U	-
CIS-1,3-DICHLOROPROPENE	5	U	
DIBROMOMETHANE	5	U	
DICHLORODIFLUOROMETHANE	5	U	-
ETHYL METHACRYLATE	10	U	
ETHYLBENZENE	5	U	
ISOBUTANOL	100	UR	
M+P-XYLENES	5	U	
METHACRYLONITRILE	50	Ü	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	U	
METHYLENE CHLORIDE	5	U	
O-XYLENE	5	U	
PENTACHLOROETHANE	10	U	
PROPIONITRILE	50	UR	C
STYRENE	5	U	
TETRACHLOROETHENE	5	U	-
TOLUENE	5	U	
TOTAL 1,2-DICHLOROETHENE	5	U	
TOTAL XYLENES	5	U	
TRANS-1,2-DICHLOROETHENE	5	U	
TRANS-1,3-DICHLOROPROPENE	5	U	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	
TRICHLOROETHENE	5	U	
TRICHLOROFLUOROMETHANE	5	U	
VINYL ACETATE	5	U	
VINYL CHLORIDE	2	U	 .

S1MW-5-0103

2/1/2003

NM

0

UG/L

WT0246-9

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: O

nsample samp_date

lab_id

S1MW-7-0103

1/31/2003 WT0233-6

qc_type NM units UG/L Pct Solide

Pct_Solids	0		
DUP_OF:			
Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	U	
1,1,1-TRICHLOROETHANE	5	U	-
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	5	U	
1,2,3-TRICHLOROPROPANE	5	U	
1,2-DIBROMO-3-CHLOROPROPANE	5	Ü	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	
1,4-DIOXANE	100	UR	C
2-BUTANONE	10	U	-
2-CHLOROETHYL VINYL ETHER	5	U	
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	UR	С
ACETONITRILE	50	UR	c
ACROLEIN	50	UR	C
ACRYLONITRILE	10	U	
BENZENE	5	U	
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	

5

5

5

U

nsample		S1MW-7-0103
samp_date		1/31/2003
lab_id		WT0233-6
qc_type	\	NM
units		UG/L

0

Pct_Solids DUP_OF:

nsample	S9MW-12-0103
samp_date	2/3/2003
lab_id	WT0246-2
qc_type	NM
units	UG/L
Pct_Solids	0
DUP_OF:	

Parameter	Result	Val Qual	Qual Code
CHLOROFORM	5	U	
CHLOROMETHANE	5	U	
CHLOROPRENE	10	U	
CIS-1,2-DICHLOROETHENE	5	U	
CIS-1,3-DICHLOROPROPENE	5	U	
DIBROMOMETHANE	5	U	
DICHLORODIFLUOROMETHANE	5	U	
ETHYL METHACRYLATE	10	U	
ETHYLBENZENE	5	U	
ISOBUTANOL	100	UR	С
M+P-XYLENES	5	U	
METHACRYLONITRILE	50	U	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	Ü	
METHYLENE CHLORIDE	5	U	
O-XYLENE	5	U	
PENTACHLOROETHANE	10	U	
PROPIONITRILE	50	UR	С
STYRENE	5	U	
TETRACHLOROETHENE	5	U	-
TOLUENE	5	U	
TOTAL 1,2-DICHLOROETHENE	5	U	
TOTAL XYLENES	5	U	
TRANS-1,2-DICHLOROETHENE	5	U	
TRANS-1,3-DICHLOROPROPENE	5	U	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	
TRICHLOROETHENE	5	U	
TRICHLOROFLUOROMETHANE	5	U	
VINYL ACETATE	5	U	
VINYL CHLORIDE	2	Ü	

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	-		
1,1,1-TRICHLOROETHANE	5	U	
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	5	U	
1,2,3-TRICHLOROPROPANE	5	U	
	5	U	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	_
1,2-DICHLOROPROPANE	5	U	_
1,4-DIOXANE	100	UR	С
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	U	
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	UR	С
ACETONITRILE	50	UR	C
ACROLEIN	50	UR	С
ACRYLONITRILE	10	U	
BENZENE	5	U	
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	-
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	U	
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	U	

Page 5 of 12 [3/24/2003 2:12:39 PM]

BROMOMETHANE

CHLOROETHANE

CARBON DISULFIDE

CARBON TETRACHLORIDE CHLOROBENZENE

CHLORODIBROMOMETHANE

SDG: 2334 MEDIA: WATER DATA FRACTION: O

nsample S9MW-12-0103 samp_date 2/3/2003

lab_id WT0246-2 qc_type NM

UG/L units 0

Pct_Solids

DUP_OF:

nsample S9MW-14-0103 samp_date 2/1/2003 lab_id WT0246-3 qc_type NM UG/L units Pct_Solids 0

DUP_OF:

nsample S9MW-14-0103 samp_date 2/1/2003 lab_id WT0246-3 NM qc_type UG/L units Pct_Solids 0

DUP_OF:

_		Val	Qual
Parameter	Result	Qual	Code
CHLOROFORM	5	U	
CHLOROMETHANE	5	U	
CHLOROPRENE	10	U	
CIS-1,2-DICHLOROETHENE	5	Ú	
CIS-1,3-DICHLOROPROPENE	5	U	
DIBROMOMETHANE	5	U	
DICHLORODIFLUOROMETHANE	5	U	
ETHYL METHACRYLATE	10	Ú	
ETHYLBENZENE	5	U	
ISOBUTANOL	100	UR	C
M+P-XYLENES	5	U	
METHACRYLONITRILE	50	U	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	U	
METHYLENE CHLORIDE	5	U	
O-XYLENE	5	U	
PENTACHLOROETHANE	10	U	
PROPIONITRILE	50	UR	C
STYRENE	5	U	
TETRACHLOROETHENE	5	U	
TOLUENE	5	U	
TOTAL 1,2-DICHLOROETHENE	5	U	
TOTAL XYLENES	5	U	
TRANS-1,2-DICHLOROETHENE	5	Ų	
TRANS-1,3-DICHLOROPROPENE	5	U	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	
TRICHLOROETHENE	5	Ų	
TRICHLOROFLUOROMETHANE	5	U	-
VINYL ACETATE	5	U	
VINYL CHLORIDE	2	U	

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	U	
1,1,1-TRICHLOROETHANE	5	Ú	
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	0.9	J	P
1,2,3-TRICHLOROPROPANE	5	U	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	Ü	
1,2-DICHLOROPROPANE	5	U	
1,4-DIOXANE	100	UR	С
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	U	
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	UR	С
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	U	
BENZENE	1	J	Р
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	U	
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	U	

Parameter	Result	Val Qual	Qual Code
CHLOROFORM	-		
CHLOROPORINI	5	U	
CHLOROMETHANE	5	U	
	10	U	
CIS-1,2-DICHLOROETHENE	1000		
CIS-1,3-DICHLOROPROPENE	5	U	
DIBROMOMETHANE	5	U	
DICHLORODIFLUOROMETHANE	5	U	
ETHYL METHACRYLATE	10	U	
ETHYLBENZENE	5	U	
ISOBUTANOL	100	UR	C
M+P-XYLENES	5	U	Α
METHACRYLONITRILE	50	U	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	U	
METHYLENE CHLORIDE	5	U	
O-XYLENE	5	U	
PENTACHLOROETHANE	10	U	
PROPIONITRILE	50	UR	С
STYRENE	5	U	
TETRACHLOROETHENE	5	U	
TOLUENE	5	U	
TOTAL 1,2-DICHLOROETHENE	4100		
TOTAL XYLENES	5	U	A
TRANS-1,2-DICHLOROETHENE	3000		
TRANS-1,3-DICHLOROPROPENE	5	U	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	
TRICHLOROETHENE	5	U	
TRICHLOROFLUOROMETHANE	5	U	
VINYL ACETATE	5	U	
VINYL CHLORIDE	2		

SDG: 2334 MEDIA: WATER DATA FRACTION: O

nsample S9MW-15-0103 samp_date 2/1/2003

lab_id WT0246-4

qc_type NM units UG/L

Pct_Solids

DUP_OF:

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE		-	
1,1,1-TRICHLOROETHANE	5	U	
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE			
1,2,3-TRICHLOROPROPANE	0.4	j	P
1,2-DIBROMO-3-CHLOROPROPANE	5	- U	
1,2-DIBROMOETHANE	5	U	***
1,2-DICHLOROETHANE	5 5	U	
·	5		
1,2-DICHLOROPROPANE	100	U	
1,4-DIOXANE 2-BUTANONE		UR	C
2-CHLOROETHYL VINYL ETHER	10	U	
2-HEXANONE	5	U	
3-CHLOROPROPENE	10		
4-METHYL-2-PENTANONE	10	U	
ACETONE	10		
ACETONITRILE	10	UR	<u>C</u>
	50	UR	C
ACROLEIN ACRYLONITRILE	50	UR	С
	10	U	
BENZENE	0.3	J	P
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	U	
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	U	

nsample	S9MW-15-0103
samp_date	2/1/2003
ab_id	WT0246-4
qc_type	NM
units	UG/L
Pct_Solids	0

DUP_OF:

Parameter	Result	Val Qual	Qual Code
CHLOROFORM	5	Ų	
CHLOROMETHANE	5	U	
CHLOROPRENE	10	U	
CIS-1,2-DICHLOROETHENE	210		
CIS-1,3-DICHLOROPROPENE	5	U	-
DIBROMOMETHANE	5	U	
DICHLORODIFLUOROMETHANE	5	U	
ETHYL METHACRYLATE	10	U	
ETHYLBENZENE	5	U	
ISOBUTANOL	100	UR	C
M+P-XYLENES	5	U	
METHACRYLONITRILE	50	U	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	U	
METHYLENE CHLORIDE	5	U	
O-XYLENE	5	U	
PENTACHLOROETHANE	10	U	
PROPIONITRILE	50	UR	С
STYRENE	5	U	
TETRACHLOROETHENE	5	U	
TOLUENE	5	U	
TOTAL 1,2-DICHLOROETHENE	740		
TOTAL XYLENES	5	U	
TRANS-1,2-DICHLOROETHENE	520		
TRANS-1,3-DICHLOROPROPENE	5	U	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	
TRICHLOROETHENE	2	J	Р
TRICHLOROFLUOROMETHANE	5	Ü	
VINYL ACETATE	5	U	
VINYL CHLORIDE	2		

dillo	OG/L		
Pct_Solids	0		
DUP_OF:	·		
Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	U	
1,1,1-TRICHLOROETHANE	5	U	
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	Ú	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	5	U	-
1,2,3-TRICHLOROPROPANE	5	U	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	
1,4-DIOXANE	100	UR	С
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	UR	С
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	U	
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	Ü	
BENZENE	5	U	
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	Ü	
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	U	
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	U	

S9MW-21-0103

2/2/2003

NM

UG/L

WT0246-5

nsample

lab_id

units

qc_type

samp_date

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: O

nsample samp_date S9MW-21-0103

2/2/2003

lab_id qc_type units

WT0246-5 NM

UG/L Pct_Solids 0

DUP_OF:

nsample samp_date lab_id

qc_type

Pct_Solids

DUP_OF:

units

S9MW-22-0103 2/2/2003

WT0246-13

NM UG/L 0

qc_type units Pct_Solids DUP_OF:

nsample

lab_id

samp_date

2/2/2003 WT0246-13

S9MW-22-0103

NM UG/L

0

Parameter	Result	Val Qual	Qual Code
CHLOROFORM	5	Ü	
CHLOROMETHANE	5	U	
CHLOROPRENE	10	U	
CIS-1,2-DICHLOROETHENE	87		
CIS-1,3-DICHLOROPROPENE	5	U	
DIBROMOMETHANE	5	Ū	
DICHLORODIFLUOROMETHANE	5	U	
ETHYL METHACRYLATE	10	U	
ETHYLBENZENE	5	U	
ISOBUTANOL	100	ŲR	C
M+P-XYLENES	5	U	
METHACRYLONITRILE	50	U	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	Ü	
METHYLENE CHLORIDE	5	U	
O-XYLENE	5	U	
PENTACHLOROETHANE	10	Ú	-
PROPIONITRILE	50	UR	C
STYRENE	5	U	
TETRACHLOROETHENE	5	U	
TOLUENE	5	U	
TOTAL 1,2-DICHLOROETHENE	280		
TOTAL XYLENES	5	U	•
TRANS-1,2-DICHLOROETHENE	190		
TRANS-1,3-DICHLOROPROPENE	5	U	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	
TRICHLOROETHENE	5	U	
TRICHLOROFLUOROMETHANE	5	U	
VINYL ACETATE	5	U	
VINYL CHLORIDE	2	U	

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	U	
1,1,1-TRICHLOROETHANE	5	U	
1,1,2,2-TETRACHLOROETHANE	5	Ü	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	Ü	*
1,1-DICHLOROETHENE	0.3	J	Р
1,2,3-TRICHLOROPROPANE	5	U	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	•
1,4-DIOXANE	100	UR	C
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	U	······
2-HEXANONE	10	Ü	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	UR	С
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	U	
BENZENE	0.7	J	Р
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	υ	
CARBON TETRACHLORIDE	5	Ü	_
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	U	

M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 1200 T TOTAL XYLENES 5 U T TRANS-1,2-DICHLOROETHENE 890 T TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U				
CHLOROFORM 5 U CHLOROMETHANE 5 U CHLOROPRENE 10 U CIS-1,2-DICHLOROETHENE 340 U CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOLUENE 5 U TOTAL XYLENE				
CHLOROMETHANE 5 U CHLOROPRENE 10 U CIS-1,2-DICHLOROETHENE 340 U CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,	Parameter	Result	Qual	Code
CHLOROPRENE 10 U CIS-1,2-DICHLOROETHENE 340 U CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TETRACHLOROETHENE 5 U T TOLUENE 5 U T TOLUENE 5 U T TOLUENE 5 U T TOLAL 1,	CHLOROFORM	5	U	
CIS-1,2-DICHLOROETHENE 340 CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TOLUENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROFTHENE 5 U VINYL ACETATE 5 U	CHLOROMETHANE	5	U	
CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 5 U TRICHLOROETHENE 5 U TRICHLOROFILOROMETHANE 5 U VINYL ACETATE 5 U	CHLOROPRENE	10	Ü	
DIBROMOMETHANE DICHLORODIFLUOROMETHANE ETHYL METHACRYLATE 10 ETHYLBENZENE 5 U ISOBUTANOL M+P-XYLENES 5 U METHACRYLONITRILE METHYL IODIDE METHYL METHACRYLATE 10 U METHYL METHACRYLATE 10 U METHYL METHACRYLATE 10 O-XYLENE 5 U PENTACHLOROETHANE 10 TETRACHLOROETHENE 5 U TOLUENE TOLUENE TOLUENE TOTAL 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,4-DICHLOROETHENE TOLUENE TRANS-1,4-DICHLOROETHENE TOLUENE TRANS-1,4-DICHLORO-2-BUTENE TRICHLOROETHENE 5 U TRICHLOROFILOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE	CIS-1,2-DICHLOROETHENE	340		
DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TETRACHLOROETHENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 1200 T TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U T	CIS-1,3-DICHLOROPROPENE	5	U	
ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 1000 UR CO M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 5 U TRICHLOROETHENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROFLUOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	DIBROMOMETHANE	5	U	
ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 10 U TRICHLOROFLUOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	DICHLORODIFLUOROMETHANE	5	U	
ISOBUTANOL	ETHYL METHACRYLATE	10	Ü	
M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TETRACHLOROETHENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 1200 T TOTAL XYLENES 5 U T TRANS-1,2-DICHLOROETHENE 890 T TRANS-1,3-DICHLOROPROPENE 5 U T TRANS-1,4-DICHLORO-2-BUTENE 10 U T TRICHLOROFLUOROMETHANE 5 U U TRICHLOROFLUOROMETHANE 5 U U	ETHYLBENZENE	5	U	
METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 10 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	ISOBUTANOL	100	UR	Ċ
METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TOLUENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 1200 T TOTAL XYLENES 5 U T TRANS-1,2-DICHLOROETHENE 890 T TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	M+P-XYLENES	5	U	
METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TOLUENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 1200 T TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,2-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	METHACRYLONITRILE	50	U	
METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TETRACHLOROETHENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 1200 T T TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U U T	METHYL IODIDE	10	Ú	
O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	METHYL METHACRYLATE	10	U	
PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TETRACHLOROETHENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 1200 T T TOTAL XYLENES 5 U T TRANS-1,2-DICHLOROETHENE 890 T T TRANS-1,3-DICHLOROPROPENE 5 U T TRANS-1,4-DICHLORO-2-BUTENE 10 U T TRICHLOROETHENE 5 U T TRICHLOROFLUOROMETHANE 5 U U VINYL ACETATE 5 U U	METHYLENE CHLORIDE	5	Ü	
PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	O-XYLENE	5	U	
STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	PENTACHLOROETHANE	10	U	
TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	PROPIONITRILE	50	UR	С
TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	STYRENE	5	U	
TOTAL 1,2-DICHLOROETHENE 1200 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TETRACHLOROETHENE	5	U	
TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TOLUENE	5	U	
TRANS-1,2-DICHLOROETHENE 890 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TOTAL 1,2-DICHLOROETHENE	1200		
TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TOTAL XYLENES	5	U	
TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TRANS-1,2-DICHLOROETHENE	890	-	
TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TRANS-1,3-DICHLOROPROPENE	5	U	
TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TRANS-1,4-DICHLORO-2-BUTENE	10	U	
VINYL ACETATE 5 U	TRICHLOROETHENE	5	U	
	TRICHLOROFLUOROMETHANE	5	U	
VINYL CHLORIDE 2 U	VINYL ACETATE	5	U	
	VINYL CHLORIDE	2	U	

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: O

nsample samp_date

S9MW-24-0103

lab_id

2/2/2003 WT0246-6

qc_type units

NM

Pct_Solids

UG/L 0

DUP_OF:

nsample samp_date lab_id

2/2/2003 WT0246-6

S9MW-24-0103

qc_type units

NM UG/L

Pct_Solids DUP_OF:

0

Pct_Solids DUP_OF:

nsample

lab_id

units

qc_type

samp_date

S9MW-25-0103

2/2/2003 WT0246-7

NM

UG/L 0

2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	
1,1,1-TRICHLOROETHANE 5 U 1,1,2,2-TETRACHLOROETHANE 5 U 1,1,2-TRICHLOROETHANE 5 U 1,1-DICHLOROETHANE 5 U 1,1-DICHLOROETHENE 5 U 1,2,3-TRICHLOROPROPANE 5 U 1,2-DIBROMO-3-CHLOROPROPANE 5 U 1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	
1,1,2,2-TETRACHLOROETHANE 5 U 1,1,2-TRICHLOROETHANE 5 U 1,1-DICHLOROETHANE 5 U 1,1-DICHLOROETHENE 5 U 1,2,3-TRICHLOROPROPANE 5 U 1,2-DIBROMO-3-CHLOROPROPANE 5 U 1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	_
1,1,2-TRICHLOROETHANE 5 U 1,1-DICHLOROETHANE 5 U 1,1-DICHLOROETHENE 5 U 1,2,3-TRICHLOROPROPANE 5 U 1,2-DIBROMO-3-CHLOROPROPANE 5 U 1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	_
1,1-DICHLOROETHANE 5 U 1,1-DICHLOROETHENE 5 U 1,2,3-TRICHLOROPROPANE 5 U 1,2-DIBROMO-3-CHLOROPROPANE 5 U 1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,2-DICHLOROPROPANE 5 U 1,2-DICHLOROPROPANE 100 UR 2-BUTANONE 100 UR 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	_
1,1-DICHLOROETHENE 5 U 1,2,3-TRICHLOROPROPANE 5 U 1,2-DIBROMO-3-CHLOROPROPANE 5 U 1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	_
1,2,3-TRICHLOROPROPANE 5 U 1,2-DIBROMO-3-CHLOROPROPANE 5 U 1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	_
1,2-DIBROMO-3-CHLOROPROPANE 5 U 1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	_
1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	_
1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	
1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	_
1,4-DIOXANE 100 UR 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	
2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	
2-CHLOROETHYL VINYL ETHER 5 U 2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	С
2-HEXANONE 10 U 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	٦
3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U	٦
4-METHYL-2-PENTANONE 10 U	٦
	٦
	٦
ACETONE 4 J C	P
ACETONITRILE 50 UR (c
ACROLEIN 50 UR (ੂ
ACRYLONITRILE 10 U	1
BENZENE 0.5 J	P
BROMODICHLOROMETHANE 5 U	٦
BROMOFORM 5 U	7
BROMOMETHANE 5 U	٦
CARBON DISULFIDE 0.6 J	키
CARBON TETRACHLORIDE 5 U	7
CHLOROBENZENE 5 U	1
CHLORODIBROMOMETHANE 5 U	1
CHLOROETHANE 5 U	1

M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U TETRACHLOROETHENE 5 U TOTAL 1,2-DICHLOROETHENE 440	Parameter	Result	Val Qual	Qual Code
CHLOROPRENE 10 U CIS-1,2-DICHLOROETHENE 110 U CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR G STYRENE 5 U T TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 5 U A TRANS-1,2-DICHLOROETHENE 5 U A TRANS-1,4-	CHLOROFORM	5	U	 -
CIS-1,2-DICHLOROETHENE 110 CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYLENE CHLORIDE 5 U METHYLENE CHLORIDE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR CTYLENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	CHLOROMETHANE	5	U	
CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL IODIDE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	CHLOROPRENE	10	U	
DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U 0 TETRACHLOROETHENE 5 U 0 TOLUENE 0.3 J F TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 0 TOTAL XYLENES 5 U A TRANS-1,3-DICHLOROPROPENE 5 U A TRANS-1,4-DICHLORO-2-BUTENE 10 U <	CIS-1,2-DICHLOROETHENE	110		
DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U 0 TETRACHLOROETHENE 5 U 0 TOLUENE 0.3 J F TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 0 0 TRANS-1,2-DICHLOROETHENE 330 0 0 TRANS-1,3-DICHLOROPROPENE 5 U U 0 TRANS-1,4-DICHLORO-2-BUTENE 10 U 0 0 <	CIS-1,3-DICHLOROPROPENE	5	U	
ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	DIBROMOMETHANE	5	Ü	
STAND	DICHLORODIFLUOROMETHANE	5	U	
ISOBUTANOL	ETHYL METHACRYLATE	10	U	
M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U U TOLUENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U A TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U U VINYL ACETATE 5 U	ETHYLBENZENE	5	U	
METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U TOTAL CONTRIBUTION OF THENE 5 U TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,2-DICHLOROPROPENE 5 U A TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U U TRICHLOROFLUOROMETHANE 5	ISOBUTANOL	100	UR	С
METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U U TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U A TRANS-1,3-DICHLOROPROPENE 5 U U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U V VINYL ACETATE 5 U	M+P-XYLENES	5	U	Α
METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR O STYRENE 5 U U TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U A TRANS-1,3-DICHLOROPROPENE 5 U U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U V VINYL ACETATE 5 U V	METHACRYLONITRILE	50	Ü	
METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U A TRANS-1,3-DICHLOROPROPENE 5 U U TRICHLOROETHENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U U V	METHYL IODIDE	10	Ü	
O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U J TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U J TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U V TRICHLOROFLUOROMETHANE 5 U V VINYL ACETATE 5 U V	METHYL METHACRYLATE	10	Ü	
PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR 0 STYRENE 5 U U TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U J TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U U	METHYLENE CHLORIDE	5	U	
PROPIONITRILE 50 UR 0 STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U VINYL ACETATE 5 U	O-XYLENE	5	U	
STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	PENTACHLOROETHANE	10	U	-
TETRACHLOROETHENE 5 U TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 0 VINYL ACETATE 5 U VINYL ACETATE 0 VINYL ACETATE <t< td=""><td>PROPIONITRILE</td><td>50</td><td>UR</td><td>С</td></t<>	PROPIONITRILE	50	UR	С
TOLUENE 0.3 J F TOTAL 1,2-DICHLOROETHENE 440 440 TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	STYRENE	5	U	
TOTAL 1,2-DICHLOROETHENE 440 TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TETRACHLOROETHENE	5	U	***
TOTAL XYLENES 5 U A TRANS-1,2-DICHLOROETHENE 330 U TRANS-1,3-DICHLOROPROPENE 5 U U TRANS-1,4-DICHLORO-2-BUTENE 10 U U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U V V V VINYL ACETATE 5 U V V V	TOLUENE	0.3	J	P
TRANS-1,2-DICHLOROETHENE 330 TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TOTAL 1,2-DICHLOROETHENE	440		_
TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TOTAL XYLENES	5	Ü	Α
TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TRANS-1,2-DICHLOROETHENE	330		
TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TRANS-1,3-DICHLOROPROPENE	5	Ū	
TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE 5 U	TRANS-1,4-DICHLORO-2-BUTENE	10	U	$\overline{}$
VINYL ACETATE 5 U	TRICHLOROETHENE	5	U	
0 0	TRICHLOROFLUOROMETHANE	5	ŭ	
VINYL CHLORIDE 2 U	VINYL ACETATE	5	U	
	VINYL CHLORIDE	2	U	

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	U	
1,1,1-TRICHLOROETHANE	5	U	_
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	5	U	
1,2,3-TRICHLOROPROPANE	5	U	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	
1,4-DIOXANE	100	UR	С
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	U	
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	Ú	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	UR	C
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	U	
BENZENE	5	Ü	
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	-
BROMOMETHANE	5	U	
CARBON DISULFIDE .	0.3	j	P
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	Ū	

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: O

nsample samp_date S9MW-25-0103

2/2/2003

lab_id qc_type

WT0246-7 NM

units

UG/L

Pct_Solids

DUP_OF:

0

DUF_UF.

	·		
Parameter	Result	Val Qual	Qual Code
CHLOROFORM	5	U	· - · · · · ·
CHLOROMETHANE	5	U	-
CHLOROPRENE	10	U	-
CIS-1,2-DICHLOROETHENE	5	U	
CIS-1,3-DICHLOROPROPENE	5	U	
DIBROMOMETHANE	5	U	
DICHLORODIFLUOROMETHANE	5	U	
ETHYL METHACRYLATE	10	U	_
ETHYLBENZENE	5	U	
ISOBUTANOL	100	UR	С
M+P-XYLENES	5	U	
METHACRYLONITRILE	50	U	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	U	
METHYLENE CHLORIDE	5	U	- "
O-XYLENE	5	U	
PENTACHLOROETHANE	10	U	
PROPIONITRILE	50	UR	С
STYRENE	5	U	_,
TETRACHLOROETHENE	5	U	
TOLUENE	5	U	_
TOTAL 1,2-DICHLOROETHENE	5	U	
TOTAL XYLENES	5	U	
TRANS-1,2-DICHLOROETHENE	0.8	J	Р
TRANS-1,3-DICHLOROPROPENE	5	U	
TRANS-1,4-DICHLORO-2-BUTENE	10	U	
TRICHLOROETHENE	5	U	
TRICHLOROFLUOROMETHANE	5	U	
VINYL ACETATE	5	U	
VINYL CHLORIDE	2	U	

nsample	S9MW-5-0103
samp_date	2/1/2003
lab_id	WT0246-1
qc_type	NM
units	UG/L
Pct_Solids	0

DUP_OF:

NM UG/L 0 lab_id qc_type units Pct_Solids DUP_OF:

nsample

samp_date

2/1/2003 WT0246-1 NM UG/L

0

S9MW-5-0103

ds ..

Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	Ū	
1,1,1-TRICHLOROETHANE	5	·U	
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	*,
1,1-DICHLOROETHANE	5	Ü	
1,1-DICHLOROETHENE	5	U	<u> </u>
1,2,3-TRICHLOROPROPANE	5	U	
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	~
1,4-DIOXANE	100	UR	С
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	UJ	С
2-HEXANONE	10	U	
3-CHLOROPROPENE	10	· U	
4-METHYL-2-PENTANONE	10	U	
ACETONE	10	UR	С
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	U	
BENZENE	3	J	Р
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	
BROMOMETHANE	5	U	
CARBON DISULFIDE	0.2	J	Р
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	UR	D
CHLORODIBROMOMETHANE	5	Ü	
CHLOROETHANE	5	Ü	

Parameter	Result	Val Qual	Qual Code
CHLOROFORM	5	U	_
CHLOROMETHANE	5	U	
CHLOROPRENE	10	U	CON
CIS-1,2-DICHLOROETHENE	5	U	, 10-r
CIS-1,3-DICHLOROPROPENE	5	U	
DIBROMOMETHANE	5	Ū	
DICHLORODIFLUOROMETHANE	5	U	
ETHYL METHACRYLATE	10	U	
ETHYLBENZENE	2	J	P
ISOBUTANOL	100	ÚR	
M+P-XYLENES	5	U	
METHACRYLONITRILE	50	U	
METHYL IODIDE	10	U	
METHYL METHACRYLATE	10	U	
METHYLENE CHLORIDE	5	U	
O-XYLENE	5	U	
PENTACHLOROETHANE	10	U	
PROPIONITRILE	50	UR	С
STYRENE	5	U	
TETRACHLOROETHENE	5	U	
TOLUENE	5	U	
TOTAL 1,2-DICHLOROETHENE	5	U	
TOTAL XYLENES	5	U	
FRANS-1,2-DICHLOROETHENE	5	U	
RANS-1,3-DICHLOROPROPENE	5	U	
RANS-1,4-DICHLORO-2-BUTENE	10	U	
RICHLOROETHENE	5	U	
RICHLOROFLUOROMETHANE	5	U	
/INYL ACETATE	5	U	
INYL CHLORIDE	2	U	

SDG: 2334 MEDIA: WATER DATA FRACTION: O

4202

nsample TB-013103 samp_date 1/21/2003 lab_id WT0233-8 qc_type NM units UG/L Pct_Solids 0

nsample TB-013103 samp_date 1/21/2003 lab_id WT0233-8 qc_type NM units UG/L Pct_Solids 0

DUP_OF:

nsample TB-020303 samp date 1/21/2003 lab_id WT0246-14 qc_type NM units UG/L Pct_Solids

DUP OF:

DUP_OF: Val Qual Parameter Result Qual Code 1,1,1,2-TETRACHLOROETHANE 5 U 1,1,1-TRICHLOROETHANE 5 U 1.1.2.2-TETRACHLOROETHANE 5 U 1,1,2-TRICHLOROETHANE 5 U 1.1-DICHLOROETHANE U 5 1,1-DICHLOROETHENE 5 U

1,2,3-TRICHLOROPROPANE 5 U 1,2-DIBROMO-3-CHLOROPROPANE 5 U 1,2-DIBROMOETHANE 5 U 1,2-DICHLOROETHANE 5 U 1,2-DICHLOROPROPANE 5 U 1,4-DIOXANE 100 UR С 2-BUTANONE 10 U 2-CHLOROETHYL VINYL ETHER 5 UJ С 2-HEXANONE 10 Ü 3-CHLOROPROPENE 10 U 4-METHYL-2-PENTANONE 10 U ACETONE 10 UR C **ACETONITRILE** С 50 UR ACROLEIN UR 50 ACRYLONITRILE 10 U BENZENE 5 U BROMODICHLOROMETHANE 5 U BROMOFORM 5 **BROMOMETHANE** 5 U CARBON DISULFIDE U 5 CARBON TETRACHLORIDE 5 CHLOROBENZENE 5 U CHLORODIBROMOMETHANE CHLOROETHANE

M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U	D		Val	Qual
CHLOROMETHANE CHLOROPRENE CHLOROPRENE CHLOROPRENE CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE DICHLORODIFLUOROMETHANE ETHYL METHACRYLATE IO U ETHYL METHACRYLATE IO U ETHYLENES SU METHACRYLONITRILE METHYL IODIDE METHYL IODIDE METHYL METHACRYLATE IO U METHYLENE CHLORIDE O-XYLENE PENTACHLOROETHANE SU PROPIONITRILE TO U PROPIONITRILE TOLUENE TOTAL 1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,4-DICHLORO-2-BUTENE TRICHLOROETHENE SU TRICHLOROFTLOROMETHANE SU TRICHLOROFLUOROMETHANE SU TRICHLOROFLUOROMETH		Result	Qual	Code
CHLOROPRENE 10 U CIS-1,2-DICHLOROETHENE 5 U CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL ENERGYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRICHLOROETHENE 5 U TRICHLOROETHENE 5 U TRICHLOROETHENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	CHLOROFORM	5	U	
CIS-1,2-DICHLOROETHENE 5 U CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR CO M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL IODIDE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR CO STYRENE 5 U TETRACHLOROETHENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROETHENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 5 U TRICHLOROETHENE 5 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	CHLOROMETHANE	5	U	
CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROETHENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 5 U TRICHLOROETHENE 5 U TRICHLOROFTLOROMETHANE 5 U TRICHLOROFLUOROMETHANE 5 U	CHLOROPRENE	10	U	
DIBROMOMETHANE 5 U DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U	CIS-1,2-DICHLOROETHENE	5	U	
DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 100 UR C M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U U TETRACHLOROETHENE 5 U TOLUENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5		5	U	-
ETHYL METHACRYLATE 10 U ETHYLBENZENE 5 U ISOBUTANOL 1000 UR CO M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR CO STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TRANS-1,2-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	DIBROMOMETHANE	5	U	
SOBUTANOL	DICHLORODIFLUOROMETHANE	5	U	
ISOBUTANOL	ETHYL METHACRYLATE	10	U	-
M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TOLUENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	ETHYLBENZENE	5	Ű	
METHACRYLONITRILE 50 U METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 5 U T TOTAL XYLENES 5 U T TRANS-1,2-DICHLOROETHENE 5 U T TRANS-1,3-DICHLOROPROPENE 5 U T TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U T	ISOBUTANOL	100	UR	C
METHYL IODIDE 10 U METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U T TETRACHLOROETHENE 5 U T TOLUENE 5 U T TOTAL 1,2-DICHLOROETHENE 5 U T TRANS-1,2-DICHLOROETHENE 5 U T TRANS-1,3-DICHLOROPROPENE 5 U T TRANS-1,3-DICHLORO-2-BUTENE 10 U T TRICHLOROETHENE 5 U T	M+P-XYLENES	5	Ū	
METHYL METHACRYLATE 10 U METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	METHACRYLONITRILE	50	U	
METHYLENE CHLORIDE 5 U O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	METHYL IODIDE	10	U	
O-XYLENE 5 U PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	METHYL METHACRYLATE	10	U	
PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	METHYLENE CHLORIDE	5	U	_
PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	O-XYLENE	5	U	
STYRENE 5 U TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	PENTACHLOROETHANE	10	U	
TETRACHLOROETHENE 5 U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	PROPIONITRILE	50	UR	С
TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	STYRENE	5	U	-
TOTAL 1,2-DICHLOROETHENE 5 U TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	TETRACHLOROETHENE	5	U	*
TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	TOLUENE	5	U	
TRANS-1,2-DICHLOROETHENE 5 U TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	TOTAL 1,2-DICHLOROETHENE	5	U	
TRANS-1,3-DICHLOROPROPENE 5 U TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	TOTAL XYLENES	5	U	
TRANS-1,4-DICHLORO-2-BUTENE 10 U TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	TRANS-1,2-DICHLOROETHENE	5	U	
TRICHLOROETHENE 5 U TRICHLOROFLUOROMETHANE 5 U	TRANS-1,3-DICHLOROPROPENE	5	U	
TRICHLOROFLUOROMETHANE 5 U	TRANS-1,4-DICHLORO-2-BUTENE	10	U	
	TRICHLOROETHENE	5	U	
VINYL ACETATE 5 U	TRICHLOROFLUOROMETHANE	5	U	
L	VINYL ACETATE	5	U	
VINYL CHLORIDE 2 U	VINYL CHLORIDE	2	U	

BOI			
Parameter	Result	Val Qual	Qual Code
1,1,1,2-TETRACHLOROETHANE	5	U	
1,1,1-TRICHLOROETHANE	5	U	
1,1,2,2-TETRACHLOROETHANE	5	U	
1,1,2-TRICHLOROETHANE	5	U	
1,1-DICHLOROETHANE	5	U	
1,1-DICHLOROETHENE	5	Ü	-
1,2,3-TRICHLOROPROPANE	5	U	**
1,2-DIBROMO-3-CHLOROPROPANE	5	U	
1,2-DIBROMOETHANE	5	U	
1,2-DICHLOROETHANE	5	U	
1,2-DICHLOROPROPANE	5	U	
1,4-DIOXANE	100	UR	С
2-BUTANONE	10	U	
2-CHLOROETHYL VINYL ETHER	5	UJ	C
2-HEXANONE	10	Ü	
3-CHLOROPROPENE	10	U	
4-METHYL-2-PENTANONE	10	U	-
ACETONE	10	UR	С
ACETONITRILE	50	UR	С
ACROLEIN	50	UR	С
ACRYLONITRILE	10	Ü	
BENZENE	5	U	-
BROMODICHLOROMETHANE	5	U	
BROMOFORM	5	U	
BROMOMETHANE	5	U	
CARBON DISULFIDE	5	U	
CARBON TETRACHLORIDE	5	U	
CHLOROBENZENE	5	U	
CHLORODIBROMOMETHANE	5	U	
CHLOROETHANE	5	U	

Page 11 of 12 [3/24/2003 2:12:40 PM]

4202

SDG: 2334

MEDIA: WATER DATA FRACTION: O

nsample

TB-020303

samp_date

1/21/2003

lab_id

WT0246-14

qc_type

NM

units

UG/L

Pct Solids

0

DUP_OF:

Val Qual Parameter Result Qual Code CHLOROFORM 5 CHLOROMETHANE 5 Ü CHLOROPRENE 10 U CIS-1.2-DICHLOROETHENE 5 CIS-1,3-DICHLOROPROPENE 5 U DIBROMOMETHANE U 5 DICHLORODIFLUOROMETHANE 5 U ETHYL METHACRYLATE U 10 ETHYLBENZENE U 5 ISOBUTANOL UR 100 С M+P-XYLENES 5 U METHACRYLONITRILE 50 U METHYL IODIDE U 10 METHYL METHACRYLATE U 10 METHYLENE CHLORIDE 5 U O-XYLENE 5 PENTACHLOROETHANE 10 U PROPIONITRILE 50 UR C STYRENE 5 U TETRACHLOROETHENE U TOLUENE 5 U TOTAL 1,2-DICHLOROETHENE TOTAL XYLENES 5 U TRANS-1,2-DICHLOROETHENE U TRANS-1,3-DICHLOROPROPENE 5 Ū TRANS-1,4-DICHLORO-2-BUTENE 10 TRICHLOROETHENE 5 TRICHLOROFLUOROMETHANE 5 U VINYL ACETATE U VINYL CHLORIDE

Page 12 of 12 [3/24/2003 2:12:40 PM]

4202

1

MEDIA: WATER DATA

FRACTION: O

nsample samp_date lab_id

SDG: 2334

0103-DUP-01 1/31/2003 WT0233-7

qc_type NM units UG/L Pct_Solids 0

DUP OF:

OF: \$1MW-7-0103

nsample samp_date lab_id qc_type units

Pct_Solids

DUP_OF:

0103-DUP-01 1/31/2003 WT0233-7 NM UG/L

0

S1MW-7-0103

nsample samp_date lab_id qc_type units Pct_Solids 0103-DUP-01 1/31/2003 WT0233-7 NM UG/L

UG/L 0

DUP_OF: S1MW-7-0103

DUP_UF:	S1MW-7-01	S1MW-7-0103		
Parameter	Result	Val Qual	Qual Code	
1,2,4,5-TETRACHLOROBENZENE	10	Ü		
1,2,4-TRICHLOROBENZENE	10	U		
1,2-DICHLOROBENZENE	10	U	-	
1,2-DIPHENYLHYDRAZINE	20	U		
1,3,5-TRINITROBENZENE	10	U		
1,3-DICHLOROBENZENE	10	U		
1,3-DINITROBENZENE	10	U		
1,4-DICHLOROBENZENE	10	U		
1,4-NAPHTHOQUINONE	10	U		
1,4-PHENYLENEDIAMINE	10	U		
1-NAPHTHYLAMINE	10	U		
2,2'-OXYBIS(1-CHLOROPROPANE)	10	U		
2,3,4,6-TETRACHLOROPHENOL	10	U		
2,4,5-TRICHLOROPHENOL	25	U		
2,4,6-TRICHLOROPHENOL	10	U		
2,4-DICHLOROPHENOL	10	U		
2,4-DIMETHYLPHENOL	10	U		
2,4-DINITROPHENOL	25	U		
2,4-DINITROTOLUENE	10	U		
2,6-DICHLOROPHENOL	10	U		
2,6-DINITROTOLUENE	10	U		
2-ACETYLAMINOFLUORENE	10	U		
2-CHLORONAPHTHALENE	10	U		
2-CHLOROPHENOL	10	U		
2-METHYLNAPHTHALENE	10	U	•	
2-METHYLPHENOL	10	U		
2-NAPHTHYLAMINE	10	Ü	-	
2-NITROANILINE	25	U		
2-NITROPHENOL	10	U		
2-PICOLINE	10	U		

Parameter	Result	Val Qual	Qual Code
3&4-METHYLPHENOL	10	U	
3,3'-DICHLOROBENZIDINE	10	U	
3,3'-DIMETHYLBENZIDINE	20	U	
3-METHYLCHOLANTHRENE	10	U	
3-NITROANILINE	25	Ū	
4,6-DINITRO-2-METHYLPHENOL	25	U	
4-AMINOBIPHENYL	10	U	
4-BROMOPHENYL PHENYL ETHER	10	U	
4-CHLORO-3-METHYLPHENOL	10	Ų	
4-CHLOROANILINE	10	U	
4-CHLOROPHENYL PHENYL ETHER	10	U	
4-NITROANILINE	25	U	
4-NITROPHENOL	25	U	
4-NITROQUINOLINE-1-OXIDE	20	UR	С
5-NITRO-O-TOLUIDINE	20	U	
7,12-DIMETHYLBENZ(A)ANTHRACENE	10	U	
A,A-DIMETHYLPHENETHYLAMINE	10	U	
ACENAPHTHENE	10	U	
ACENAPHTHYLENE	10	U	
ACETOPHENONE	10	U	
ANILINE	10	U	
ANTHRACENE	10	U	
ARAMITE	20	U	
BENZIDINE	50	Ü	
BENZO(A)ANTHRACENE	10	U	
BENZO(A)PYRENE	10	U	
BENZO(B)FLUORANTHENE	10	U	
BENZO(G,H,I)PERYLENE	10	Ü	
BENZO(K)FLUORANTHENE	10	U	
BENZYL ALCOHOL	20	U	

Parameter	Result	Val Qual	Qual Code
BIS(2-CHLOROETHOXY)METHANE	10	Ū	
BIS(2-CHLOROETHYL)ETHER	10	U	
BIS(2-ETHYLHEXYL)PHTHALATE	10	U	
BUTYL BENZYL PHTHALATE	10	U	-
CARBAZOLE	10	U	
CHLOROBENZILATE	20	Ü	
CHRYSENE	10	U	
DIALLATE	20	UR	C
DIBENZO(A,H)ANTHRACENE	10	Ũ	1
DIBENZOFURAN	10	U	
DIETHYL PHTHALATE	10	U	
DIMETHOATE	10	U	
DIMETHYL PHTHALATE	10	U	
DI-N-BUTYL PHTHALATE	10	U	_
DI-N-OCTYL PHTHALATE	10	U	
DISULFOTON	10	U	
ETHYL METHANE SULFONATE	10	U	
FAMPHUR	10	UJ	С
FLUORANTHENE	10	U	-
FLUORENE	10	U	_
HEXACHLOROBENZENE	10	U	-
HEXACHLOROBUTADIENE	10	U	
HEXACHLOROCYCLOPENTADIENE	10	U	Ì
HEXACHLOROETHANE	10	U	
HEXACHLOROPHENE	10	U	-
HEXACHLOROPROPENE	10	U	
NDENO(1,2,3-CD)PYRENE	10	U	
SODRIN	20	U	
SOPHORONE	10	Ü	
SOSAFROLE	20	U	
-			

Page 1 of 6 [3/24/2003 2:21:23 PM]

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: O

nsample samp_date 0103-DUP-01 1/31/2003

lab_id qc_type WT0233-7 NM

Pct_Solids

units

UG/L 0

DUP OF:

S1MW-7-0103

nsample samp_date lab_id qc_type

units

Pct_Solids

DUP_OF:

S1MW-7-0103 1/31/2003 WT0233-6

NM UG/L 0

nsample samp_date lab_id qc_type

S1MW-7-0103 1/31/2003 WT0233-6

NM

UG/L 0

Pct_Solids

DUP_OF:

units

DUP_OF: \$1MW-7-0103			
Parameter	Result	Val Qual	Qual Code
KEPONE	10	UR	С
METHAPYRILENE	10	U	
METHYL METHANE SULFONATE	20	U	
METHYL PARATHION	10	Ū	
NAPHTHALENE	10	U	
NITROBENZENE	10	U	
N-NITROSODIETHYLAMINE	20	U	
N-NITROSODIMETHYLAMINE	20	U	
N-NITROSO-DI-N-BUTYLAMINE	10	U	
N-NITROSO-DI-N-PROPYLAMINE	10	U	
N-NITROSODIPHENYLAMINE	10	U	-
N-NITROSOMETHYLETHYLAMINE	10	U	
N-NITROSOMORPHOLINE	10	U	
N-NITROSOPIPERIDINE	10	U	
N-NITROSOPYRROLIDINE	10	U	
O,O,O-TRIETHYL PHOSPHOROTHIOAT	20	U	
O-TOLUIDINE	10	U	
P-(DIMETHYLAMINO)AZOBENZENE	20	U	
PENTACHLOROBENZENE	10	U	
PENTACHLORONITROBENZENE	10	U	
PENTACHLOROPHENOL	25	U	
PHENACETIN	10	U	
PHENANTHRENE	10	U	
PHENOL	10	U	
PHORATE	10	U	
PRONAMIDE	10	U	
PYRENE	10	U	
PYRIDINE	50	U	
SAFROLE	10	U	
SULFOTEPP	10	U	

Parameter	Result	Val Qual	Qual Code
1,2,4,5-TETRACHLOROBENZENE	10	U	
1,2,4-TRICHLOROBENZENE	10	Ú	
1,2-DICHLOROBENZENE	10	U	
1,2-DIPHENYLHYDRAZINE	20	U	
1,3,5-TRINITROBENZENE	10	U	
1,3-DICHLOROBENZENE	10	U	
1,3-DINITROBENZENE	10	U	
1,4-DICHLOROBENZENE	10	U	
1,4-NAPHTHOQUINONE	10	U	
1,4-PHENYLENEDIAMINE	10	U	
1-NAPHTHYLAMINE	10	U	
2,2'-OXYBIS(1-CHLOROPROPANE)	10	U	
2,3,4,6-TETRACHLOROPHENOL	10	U	•
2,4,5-TRICHLOROPHENOL	25	U	
2,4,6-TRICHLOROPHENOL	10	U	
2,4-DICHLOROPHENOL	10	U	
2,4-DIMETHYLPHENOL	10	U	
2,4-DINITROPHENOL	25	U	
2,4-DINITROTOLUENE	10	U	
2,6-DICHLOROPHENOL	10	Ü	
2,6-DINITROTOLUENE	10	U	
2-ACETYLAMINOFLUORENE	10	U	
2-CHLORONAPHTHALENE	10	U	
2-CHLOROPHENOL	10	U	
2-METHYLNAPHTHALENE	10	U	
2-METHYLPHENOL	10	U	
2-NAPHTHYLAMINE	10	U	
2-NITROANILINE	25	U	
2-NITROPHENOL	10	U	
2-PICOLINE	10	U	

Parameter	Result	Val Qual	Qual Code
3&4-METHYLPHENOL	10	U	
3,3'-DICHLOROBENZIDINE	10	Ü	
3,3'-DIMETHYLBENZIDINE	20	U	
3-METHYLCHOLANTHRENE	10	Ű	
3-NITROANILINE	25	U	
4,6-DINITRO-2-METHYLPHENOL	25	U	
4-AMINOBIPHENYL	10	U	
4-BROMOPHENYL PHENYL ETHER	10	U	
4-CHLORO-3-METHYLPHENOL	10	U	
4-CHLOROANILINE	10	U	
4-CHLOROPHENYL PHENYL ETHER	10	U	
4-NITROANILINE	25	U	
4-NITROPHENOL	25	U	
4-NITROQUINOLINE-1-OXIDE	20	UR	С
5-NITRO-O-TOLUIDINE	20	U	
7,12-DIMETHYLBENZ(A)ANTHRACENE	10	U	
A,A-DIMETHYLPHENETHYLAMINE	10	U	
ACENAPHTHENE	10	U	-
ACENAPHTHYLENE	10	U	
ACETOPHENONE	10	U	
ANILINE	10	U	
ANTHRACENE	10	U	
ARAMITE	20	U	
BENZIDINE	50	U	
BENZO(A)ANTHRACENE	10	U	
BENZO(A)PYRENE	10	U	
BENZO(B)FLUORANTHENE	10	U	
BENZO(G,H,I)PERYLENE	10	U	
BENZO(K)FLUORANTHENE	10	U	
BENZYL ALCOHOL	20	U	

SDG: 2334 MEDIA: WATER DATA FRACTION: O

 nsample
 \$1MW-7-0103

 samp_date
 1/31/2003

 lab_id
 WT0233-6

qc_type NM units UG/L

Pct_Solids 0

DUP_OF:

HEXACHLOROBUTADIENE				
BIS(2-CHLOROETHOXY)METHANE 10 U BIS(2-CHLOROETHYL)ETHER 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U BUTYL BENZYL PHTHALATE 10 U CARBAZOLE 10 U CHLOROBENZILATE 20 U CHRYSENE 10 U DIALLATE 20 UR C DIBENZO(A,H)ANTHRACENE 10 U DIBENZOFURAN 10 U DIBENZOFURAN 10 U DIETHYL PHTHALATE 10 U DIMETHYL PHTHALATE 10 U DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBUTADIENE 10 U <td>Darameter</td> <td>Dog. 44</td> <td></td> <td></td>	Darameter	Dog. 44		
BIS(2-CHLOROETHYL)ETHER	Parameter	Hesuit	Quai	Code
BIS(2-ETHYLHEXYL)PHTHALATE	, ,		_	
BUTYL BENZYL PHTHALATE	F	10	U	
CARBAZOLE 10 U CHLOROBENZILATE 20 U CHRYSENE 10 U DIALLATE 20 UR C DIBENZO(A,H)ANTHRACENE 10 U DIBENZOFURAN 10 U DIBENZOFURAN 10 U DIETHYL PHTHALATE 10 U DIMETHOATE 10 U DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2			U	
CHLOROBENZILATE 20 U CHRYSENE 10 U DIALLATE 20 UR C DIBENZO(A,H)ANTHRACENE 10 U DIBENZOFURAN 10 U DIETHYL PHTHALATE 10 U DIMETHOATE 10 U DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U HEXACHLOROPROPENE 10 U <td< td=""><td>BUTYL BENZYL PHTHALATE</td><td>10</td><td>U</td><td></td></td<>	BUTYL BENZYL PHTHALATE	10	U	
CHRYSENE 10 U DIALLATE 20 UR C DIBENZO(A,H)ANTHRACENE 10 U DIBENZOFURAN 10 U DIETHYL PHTHALATE 10 U DIMETHOATE 10 U DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U HEXACHLOROPROPENE 10 U HEXACHLOROPROPENE 10 U HEXACHLOROPROPENE 10 U	CARBAZOLE	10	U	
DIALLATE 20 UR C DIBENZO(A,H)ANTHRACENE 10 U DIBENZOFURAN 10 U DIETHYL PHTHALATE 10 U DIMETHOATE 10 U DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPHOPENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	CHLOROBENZILATE	20	U	
DIBENZO(A,H)ANTHRACENE 10 U DIBENZOFURAN 10 U DIETHYL PHTHALATE 10 U DIMETHOATE 10 U DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPHOPENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	CHRYSENE	10	U	
DIBENZOFURAN 10 U DIETHYL PHTHALATE 10 U DIMETHOATE 10 U DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	DIALLATE	20	UR	С
DIETHYL PHTHALATE	DIBENZO(A,H)ANTHRACENE	10	U	
DIMETHOATE 10 U DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROPHANE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	DIBENZOFURAN	10	U	
DIMETHYL PHTHALATE 10 U DI-N-BUTYL PHTHALATE 10 U DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	DIETHYL PHTHALATE	10	U	
DI-N-BUTYL PHTHALATE 10 U DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROFHANE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	DIMETHOATE	10	U	
DI-N-OCTYL PHTHALATE 10 U DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROETHANE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	DIMETHYL PHTHALATE	10	U	
DISULFOTON 10 U ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROETHANE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	DI-N-BUTYL PHTHALATE	10	U	
ETHYL METHANE SULFONATE 10 U FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROETHANE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPHENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISOPHORONE 10 U	DI-N-OCTYL PHTHALATE	10	U	
FAMPHUR 10 U FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROETHANE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	DISULFOTON	10	U	
FLUORANTHENE 10 U FLUORENE 10 U HEXACHLOROBENZENE 10 U HEXACHLOROBUTADIENE 10 U HEXACHLOROCYCLOPENTADIENE 10 U HEXACHLOROETHANE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	ETHYL METHANE SULFONATE	10	U	
FLUORENE	FAMPHUR	10	U	
HEXACHLOROBENZENE	FLUORANTHENE	10	U	
HEXACHLOROBUTADIENE 10	FLUORENE	10	U	
HEXACHLOROCYCLOPENTADIENE	HEXACHLOROBENZENE	10	U	
HEXACHLOROETHANE 10 U HEXACHLOROPHENE 10 U HEXACHLOROPROPENE 10 U INDENO(1,2,3-CD)PYRENE 10 U ISODRIN 20 U ISOPHORONE 10 U	HEXACHLOROBUTADIENE	10	U	
HEXACHLOROPHENE	HEXACHLOROCYCLOPENTADIENE	10	U	
HEXACHLOROPROPENE	HEXACHLOROETHANE	10	U	
INDENO(1,2,3-CD)PYRENE	HEXACHLOROPHENE	10	U	
SODRIN	HEXACHLOROPROPENE	10	U	
ISOPHORONE 10 U	INDENO(1,2,3-CD)PYRENE	10	U	
	ISODRIN	20	U	
ISOSAFROLE 20 U	ISOPHORONE	10	U	
	ISOSAFROLE	20	U	

Parameter	Result	Val Qual	Qual Code
KEPONE	10	UR	C
METHAPYRILENE	10	U	
METHYL METHANE SULFONATE	20	U	
METHYL PARATHION	10	U	
NAPHTHALENE	10	U	
NITROBENZENE	10	U	
N-NITROSODIETHYLAMINE	20	U	
N-NITROSODIMETHYLAMINE	20	U	
N-NITROSO-DI-N-BUTYLAMINE	10	U	
N-NITROSO-DI-N-PROPYLAMINE	10	U	
N-NITROSODIPHENYLAMINE	10	Ü	
N-NITROSOMETHYLETHYLAMINE	10	U	
N-NITROSOMORPHOLINE	10	U	
N-NITROSOPIPERIDINE	10	U	
N-NITROSOPYRROLIDINE	10	U	
O,O,O-TRIETHYL PHOSPHOROTHIOAT	20	U	
O-TOLUIDINE	10	U	
P-(DIMETHYLAMINO)AZOBENZENE	20	U	
PENTACHLOROBENZENE	10	U	
PENTACHLORONITROBENZENE	10	U	
PENTACHLOROPHENOL	25	U	
PHENACETIN	10	U	
PHENANTHRENE	10	U	
PHENOL	10	U	
PHORATE	10	U	

10

10

50

10

10

Ū

U

U

S1MW-7-0103

1/31/2003

WT0233-6

NM

0

UG/L

nsample

lab_id

units

qc_type

samp_date

nsample

lab_id

units

qc_type

samp_date

Pct_Solids

PRONAMIDE

PYRENE

PYRIDINE

SAFROLE

SULFOTEPP

armo	00/2			
Pct_Solids	0			
DUP_OF:	,			
			Val	Qual
Parameter	Res	ult	Qual	Code
1,2,4,5-TETRACHLOROBENZENE		10	υ	
1,2,4-TRICHLOROBENZENE		10	U	
1,2-DICHLOROBENZENE		10	·U	
1,2-DIPHENYLHYDRAZINE		20	U	
1,3,5-TRINITROBENZENE		10	U	
1,3-DICHLOROBENZENE		10	Ú	
1,3-DINITROBENZENE		10	U	
1,4-DICHLOROBENZENE		10	U	
1,4-NAPHTHOQUINONE		10	U	
1,4-PHENYLENEDIAMINE		10	U	
1-NAPHTHYLAMINE		10	U	
2,2'-OXYBIS(1-CHLOROPROPANE)		10	U	
2,3,4,6-TETRACHLOROPHENOL		10	U	
2,4,5-TRICHLOROPHENOL		25	U	_
2,4,6-TRICHLOROPHENOL		10	U	
2,4-DICHLOROPHENOL		10	U	
2,4-DIMETHYLPHENOL		10	U	
2,4-DINITROPHENOL		25	U	
2,4-DINITROTOLUENE		10	U	
2,6-DICHLOROPHENOL		10	U	
2,6-DINITROTOLUENE		10	U	
2-ACETYLAMINOFLUORENE		10	U	
2-CHLORONAPHTHALENE		10	U	
2-CHLOROPHENOL	-	10	U	
2-METHYLNAPHTHALENE		10	U	
2-METHYLPHENOL		10	U	
2-NAPHTHYLAMINE		10	U	
2-NITROANILINE	1	25	U	
2-NITROPHENOL		10	U	
2-PICOLINE		10	U	
		_		

S1SW-1-0103

2/1/2003

NM

UG/L

WT0246-10

4202

SDG: 2334

MEDIA: WATER DATA

FRACTION: O

nsample samp_date S1SW-1-0103

2/1/2003

WT0246-10 lab_id

NM qc_type units UG/L 0 Pct_Solids

DUP_OF:

nsample samp_date

units

S1SW-1-0103

2/1/2003 WT0246-10

0

lab_id qc_type NM UG/L

Pct_Solids

DUP_OF:

nsample samp_date lab_id

S1SW-1-0103 2/1/2003

WT0246-10

NM qc_type units UG/L 0 Pct_Solids

DUP_OF:

Parameter	Result	Val Qual	Qual Code
3&4-METHYLPHENOL	10	U	
3,3'-DICHLOROBENZIDINE	10	U	
3,3'-DIMETHYLBENZIDINE	20	U	
3-METHYLCHOLANTHRENE	10	U	
3-NITROANILINE	25	U	
4,6-DINITRO-2-METHYLPHENOL	25	U	
4-AMINOBIPHENYL	10	U	
4-BROMOPHENYL PHENYL ETHER	10	U	
4-CHLORO-3-METHYLPHENOL	10	U	
4-CHLOROANILINE	10	U	
4-CHLOROPHENYL PHENYL ETHER	10	U	
4-NITROANILINE	25	U	
4-NITROPHENOL	25	U	
4-NITROQUINOLINE-1-OXIDE	20	UR	C
5-NITRO-O-TOLUIDINE	20	U	
7,12-DIMETHYLBENZ(A)ANTHRACENE	10	U	
A,A-DIMETHYLPHENETHYLAMINE	10	U	
ACENAPHTHENE	10	U	
ACENAPHTHYLENE	10	U	
ACETOPHENONE	10	U	
ANILINE	10	Ú	
ANTHRACENE	10	U	
ARAMITE	20	U	
BENZIDINE	50	U	
BENZO(A)ANTHRACENE	10	U	
BENZO(A)PYRENE	10	U	
BENZO(B)FLUORANTHENE	10	U	*
BENZO(G,H,I)PERYLENE	10	U	
BENZO(K)FLUORANTHENE	10	U	
BENZYL ALCOHOL	20	U	<u> </u>

Davagastas	Daniella	Val	Qual
Parameter	Result	Qual	Code
BIS(2-CHLOROETHOXY)METHANE	10	U	
BIS(2-CHLOROETHYL)ETHER	10	U	
BIS(2-ETHYLHEXYL)PHTHALATE	10	U	
BUTYL BENZYL PHTHALATE	10	U	
CARBAZOLE	10	U	
CHLOROBENZILATE	20	U	
CHRYSENE	10	U	
DIALLATE	20	UR	С
DIBENZO(A,H)ANTHRACENE	10	U	
DIBENZOFURAN	10	U	
DIETHYL PHTHALATE	10	U	
DIMETHOATE	10	U	
DIMETHYL PHTHALATE	10	U	
DI-N-BUTYL PHTHALATE	10	υ	
DI-N-OCTYL PHTHALATE	10	U	
DISULFOTON	10	Ú	
ETHYL METHANE SULFONATE	10	U	
FAMPHUR	10	UJ	С
FLUORANTHENE	10	Ü	
FLUORENE	10	U	
HEXACHLOROBENZENE	10	U	
HEXACHLOROBUTADIENE	10	υ	
HEXACHLOROCYCLOPENTADIENE	10	U	
HEXACHLOROETHANE	10	U	
HEXACHLOROPHENE	10	U	
HEXACHLOROPROPENE	10	U	
INDENO(1,2,3-CD)PYRENE	10	U	
ISODRIN	20	U	
ISOPHORONE	10	U	
ISOSAFROLE	20	U	

Parameter	Result	Val Qual	Qual Code
KEPONE	10	UR	C
METHAPYRILENE	10	U	
METHYL METHANE SULFONATE	20	U	
METHYL PARATHION	10	U	
NAPHTHALENE	10	Ű	
NITROBENZENE	10	U	
N-NITROSODIETHYLAMINE	20	U	
N-NITROSODIMETHYLAMINE	20	U	
N-NITROSO-DI-N-BUTYLAMINE	10	U	
N-NITROSO-DI-N-PROPYLAMINE	10	U	
N-NITROSODIPHENYLAMINE	10	U	
N-NITROSOMETHYLETHYLAMINE	10	U	
N-NITROSOMORPHOLINE	10	U	
N-NITROSOPIPERIDINE	10	U	
N-NITROSOPYRROLIDINE	10	U	
O,O,O-TRIETHYL PHOSPHOROTHIOAT	20	Ú	
O-TOLUIDINE	10	U	
P-(DIMETHYLAMINO)AZOBENZENE	20	U	
PENTACHLOROBENZENE	10	U	
PENTACHLORONITROBENZENE	10	U	
PENTACHLOROPHENOL	25	U	
PHENACETIN	10	U	
PHENANTHRENE	10	U	
PHENOL	10	U	
PHORATE	10	U	
PRONAMIDE	10	U	-
PYRENE	10	U	
PYRIDINE	50	U	
SAFROLE	10	U	
SULFOTEPP	10	U	

PROJ_NO: 4202

SDG: 2334 MEDIA: WATER DATA FRACTION: O

nsample S1SW-2-0103 samp_date 2/1/2003 lab_id WT0246-11

qc_type NM units UG/L Pct_Solids

DUP OF:

nsample S1SW-2-0103 samp_date 2/1/2003 lab_id WT0246-11 qc_type NM units UG/L Pct_Solids 0 . DUP_OF:

lab_id qc_type units Pct_Solids DUP_OF:

Qual

Val

nsample

samp_date WT0246-11 NM UG/L 0

S1SW-2-0103

2/1/2003

Parameter	Result	Val Qual	Qual Code
1,2,4,5-TETRACHLOROBENZENE	10	U	
1,2,4-TRICHLOROBENZENE	10	U	
1,2-DICHLOROBENZENE	10	U	
1,2-DIPHENYLHYDRAZINE	20	U	
1,3,5-TRINITROBENZENE	10	U	
1,3-DICHLOROBENZENE	10	U	
1,3-DINITROBENZENE	10	Ü	
1,4-DICHLOROBENZENE	10	U	
1,4-NAPHTHOQUINONE	10	U	
1,4-PHENYLENEDIAMINE	10	U	
1-NAPHTHYLAMINE	10	U	
2,2'-OXYBIS(1-CHLOROPROPANE)	10	U	
2,3,4,6-TETRACHLOROPHENOL	10	U	
2,4,5-TRICHLOROPHENOL	25	U	
2,4,6-TRICHLOROPHENOL	10	U	
2,4-DICHLOROPHENOL	10	U	
2,4-DIMETHYLPHENOL	10	U	
2,4-DINITROPHENOL	25	U	
2,4-DINITROTOLUENE	10	U	
2,6-DICHLOROPHENOL	10	U	
2,6-DINITROTOLUENE	10	U	
2-ACETYLAMINOFLUORENE	10	U	
2-CHLORONAPHTHALENE	10	U	
2-CHLOROPHENOL	10	U	
2-METHYLNAPHTHALENE	10	U	
2-METHYLPHENOL	10	U	
2-NAPHTHYLAMINE	10	U	
2-NITROANILINE	25	U	
2-NITROPHENOL	10	U	
2-PICOLINE	10	U	

Parameter	Result	Qual	Code
3&4-METHYLPHENOL	10	U	
3,3'-DICHLOROBENZIDINE	10	U	
3,3'-DIMETHYLBENZIDINE	20	U	
3-METHYLCHOLANTHRENE	10	U	
3-NITROANILINE	25	U	
4,6-DINITRO-2-METHYLPHENOL	25	U	
4-AMINOBIPHENYL	10	Ū	
4-BROMOPHENYL PHENYL ETHER	10	U	
4-CHLORO-3-METHYLPHENOL	10	U	
4-CHLOROANILINE	10	U	
4-CHLOROPHENYL PHENYL ETHER	10	U	
4-NITROANILINE	25	U	
4-NITROPHENOL	25	U	
4-NITROQUINOLINE-1-OXIDE	20	UR	С
5-NITRO-O-TOLUIDINE	20	U	
7,12-DIMETHYLBENZ(A)ANTHRACENE	10	U	
A,A-DIMETHYLPHENETHYLAMINE	10	U	
ACENAPHTHENE	10	U	•
ACENAPHTHYLENE	10	U	
ACETOPHENONE	10	Ü	
ANILINE	10	U	
ANTHRACENE	10	U	
ARAMITE	20	U	
BENZIDINE	50	Ü	
BENZO(A)ANTHRACENE	10	U	
BENZO(A)PYRENE	10	U	
BENZO(B)FLUORANTHENE	10	U	
BENZO(G,H,I)PERYLENE	10	U	
BENZO(K)FLUORANTHENE	10	U	
BENZYL ALCOHOL	20	U	

		Val	Qual
Parameter	Result	Qual	Code
BIS(2-CHLOROETHOXY)METHANE	10	U	
BIS(2-CHLOROETHYL)ETHER	10	U	
BIS(2-ETHYLHEXYL)PHTHALATE	10	U	
BUTYL BENZYL PHTHALATE	10	U	
CARBAZOLE	10	U	
CHLOROBENZILATE	20	U	
CHRYSENE	10	U	
DIALLATE	20	UR	С
DIBENZO(A,H)ANTHRACENE	10	U	
DIBENZOFURAN	10	U	
DIETHYL PHTHALATE	10	U	
DIMETHOATE	10	U	
DIMETHYL PHTHALATE	10	U	
DI-N-BUTYL PHTHALATE	10	U	
DI-N-OCTYL PHTHALATE	10	U	
DISULFOTON	10	U	
ETHYL METHANE SULFONATE	10	U	
FAMPHUR	10	U	
FLUORANTHENE	10	U	
FLUORENE	10	U	
HEXACHLOROBENZENE	10	U	
HEXACHLOROBUTADIENE	10	U	
HEXACHLOROCYCLOPENTADIENE	10	U	
HEXACHLOROETHANE	10	Ü	
HEXACHLOROPHENE	10	U	
HEXACHLOROPROPENE	10	U	
INDENO(1,2,3-CD)PYRENE	10	U	
ISODRIN	20	U	
ISOPHORONE	10	U	
ISOSAFROLE	20	U	

PROJ_NO: 4202

SDG: 2334 MEDIA: WATER DATA FRACTION: O

nsample

S1SW-2-0103

samp_date

2/1/2003

lab_id

WT0246-11

qc_type units

NM

UG/L

Pct_Solids

0

DUP_OF:

Doromotor	Dan II	Val	Qual
Parameter	Result	Qual	Code
KEPONE	10	UR	С
METHAPYRILENE	10	U	
METHYL METHANE SULFONATE	20	U	
METHYL PARATHION	10	U	
NAPHTHALENE	10	U	
NITROBENZENE	10	U	
N-NITROSODIETHYLAMINE	20	U	
N-NITROSODIMETHYLAMINE	20	U	
N-NITROSO-DI-N-BUTYLAMINE	10	U	
N-NITROSO-DI-N-PROPYLAMINE	10	Ü	
N-NITROSODIPHENYLAMINE	10	Ü	
N-NITROSOMETHYLETHYLAMINE	10	U	
N-NITROSOMORPHOLINE	10	U	
N-NITROSOPIPERIDINE	10	U	
N-NITROSOPYRROLIDINE	10	U	
O,O,O-TRIETHYL PHOSPHOROTHIOAT	20	U	
O-TOLUIDINE	10	U	
P-(DIMETHYLAMINO)AZOBENZENE	20	U	
PENTACHLOROBENZENE	10	U	
PENTACHLORONITROBENZENE	10	U	
PENTACHLOROPHENOL	25	U	
PHENACETIN	10	U	
PHENANTHRENE	10	U	
PHENOL	10	U	
PHORATE	10	U	
PRONAMIDE	10	U	
PYRENE	10	U	
PYRIDINE	50	U	
SAFROLE	10	U	
SULFOTEPP	10	U	

Page 6 of 6 [3/24/2003 2:21:24 PM]

PROJ NO: 4202

SDG: 2334 MEDIA: WATER DATA FRACTION: P

nsample FC-MW-05-0103 samp_date 1/31/2003 lab_id WT0233-3 qc_type NM units UG/L Pct_Solids 0

samp_date lab_id qc_type units Pct Solids

nsample

DUP_OF:

FC-MW-06-0103 1/31/2003 WT0233-1 NM UG/L 0

nsample samp_date lab_id qc_type units Pct_Solids

FC-MW-20R-0103 1/31/2003 WT0233-2 NM UG/L

0

DUP OF:

DUP_OF: Val Qual Parameter Result Qual Code 1-METHYLNAPHTHALENE 0.2 U 2-METHYLNAPHTHALENE 0.2 U **ACENAPHTHENE** 0.2 U U ACENAPHTHYLENE 0.2 0.2 ANTHRACENE U BENZO(A)ANTHRACENE U 0.2 0.2 U BENZO(A)PYRENE BENZO(B)FLUORANTHENE 0.2 С 0.2 U BENZO(G,H,I)PERYLENE U BENZO(K)FLUORANTHENE 0.2 U CHRYSENE 0.2 0.2 U DIBENZO(A,H)ANTHRACENE U FLUORANTHENE 0.2 Ū FLUORENE 0.2

U

U U

U

0.2

0.2

0.2

0.2

Parameter	Result	Val Qual	Qual Code
1-METHYLNAPHTHALENE	0.2	U	
2-METHYLNAPHTHALENE	0.2	U	
ACENAPHTHENE	0.2	U	
ACENAPHTHYLENE	0.2	Ü	
ANTHRACENE	0.2	U	
BENZO(A)ANTHRACENE	0.2	U	
BENZO(A)PYRENE	0.2	U	
BENZO(B)FLUORANTHENE	0.2	U	
BENZO(G,H,I)PERYLENE	0.2	U	
BENZO(K)FLUORANTHENE	0.2	U	
CHRYSENE	0.2	U	
DIBENZO(A,H)ANTHRACENE	0.2	U	
FLUORANTHENE	0.2	U	
FLUORENE	0.2	U	
INDENO(1,2,3-CD)PYRENE	0.2	U	
NAPHTHALENE	0.2	U	
PHENANTHRENE	0.2	U	
PYRENE	0.2	U	

Parameter	Result	Val Qual	Qual Code
1-METHYLNAPHTHALENE	46	J	Р
2-METHYLNAPHTHALENE	180		
ACENAPHTHENE	52	U	
ACENAPHTHYLENE	52	U	
ANTHRACENE	52	U	
BENZO(A)ANTHRACENE	52	U	
BENZO(A)PYRENE	52	Ü	
BENZO(B)FLUORANTHENE	52	Ü	
BENZO(G,H,I)PERYLENE	52	U	
BENZO(K)FLUORANTHENE	52	U	
CHRYSENE	52	U	
DIBENZO(A,H)ANTHRACENE	52	U	
FLUORANTHENE	52	Ü	
FLUORENE	52	U	
INDENO(1,2,3-CD)PYRENE	52	Ü	
NAPHTHALENE	630		
PHENANTHRENE	52	U	
PYRENE	52	U	*

INDENO(1,2,3-CD)PYRENE

NAPHTHALENE

PYRENE

PHENANTHRENE

PROJ_NO: 4202

SDG: 2334 MEDIA: WATER DATA FRACTION: P

 nsample
 0103-DUP-01

 samp_date
 1/31/2003

 lab_id
 WT0233-7

 qc_type
 NM

 units
 UG/L

 Pct_Solids
 0

DUP_OF: S1MW-7-0103

Parameter	Result	Val Qual	Qual Code
4,4'-DDD	0.10	U	
4,4'-DDE	0.10	U	
4,4'-DDT	0.10	U	
ALDRIN	0.050	U	
ALPHA-BHC	0.050	U	
ALPHA-CHLORDANE	0.050	U	
BETA-BHC	0.050	U	
CHLORDANE	0.50	U	
DELTA-BHC	0.050	U	
DIELDRIN	0.10	U	
ENDOSULFAN I	0.050	U	
ENDOSULFAN II	0.10	U	
ENDOSULFAN SULFATE	0.10	U	
ENDRIN	0.10	U	
ENDRIN ALDEHYDE	0.10	U	
ENDRIN KETONE	0.10	U	
GAMMA-BHC (LINDANE)	0.050	U	
GAMMA-CHLORDANE	0.050	U	
HEPTACHLOR	0.050	U	
HEPTACHLOR EPOXIDE	0.050	U	
METHOXYCHLOR	0.50	U	
TOXAPHENE	1.0	U	

 nsample
 \$1MW-7-0103

 samp_date
 1/31/2003

 lab_id
 WT0233-6

 qc_type
 NM

 units
 UG/L

 Pct_Solids
 0

DUP_OF:

		Val	Qual
Parameter	Result	Qual	Code
4,4'-DDD	0.10	U	
4,4'-DDE	0.10	U	·
4,4'-DDT	0.10	U	
ALDRIN	0.050	U	
ALPHA-BHC	0.050	U	
ALPHA-CHLORDANE	0.050	U	
ВЕТА-ВНС	0.050	U	
CHLORDANE	0.50	U	
DELTA-BHC	0.050	U	
DIELDRIN	0.10	U	<u>-</u>
ENDOSULFAN I	0.050	U	
ENDOSULFAN II	0.10	U	
ENDOSULFAN SULFATE	0.10	U	
ENDRIN	0.10	U	
ENDRIN ALDEHYDE	0.10	U	
ENDRIN KETONE	0.10	U	
GAMMA-BHC (LINDANE)	0.050	U	
GAMMA-CHLORDANE	0.050	U	
HEPTACHLOR	0.050	U	
HEPTACHLOR EPOXIDE	0.050	U	
METHOXYCHLOR	0.50	U	
TOXAPHENE	1.0	U	

 nsample
 \$1\$W-2-0103

 samp_date
 2/1/2003

 lab_id
 WT0246-11

 qc_type
 NM

 units
 UG/L

 Pct_Solids
 0

DUP_OF:

Parameter	Result	Val Qual	Qual Code
4,4'-DDD	0.10	U	
4,4'-DDE	0.10	U	
4,4'-DDT	0.10	U	
ALDRIN	0.050	U	
ALPHA-BHC	0.050	U	
ALPHA-CHLORDANE	0.050	U	
BETA-BHC	0.050	U	
CHLORDANE	0.50	U	
DELTA-BHC	0.050	U	
DIELDRIN	0.10	U	
ENDOSULFAN I	0.050	U	
ENDOSULFAN II	0.10	U	
ENDOSULFAN SULFATE	0.10	U	
ENDRIN	0.10	U	
ENDRIN ALDEHYDE	0.10	U	-
ENDRIN KETONE	0.10	Ü	
GAMMA-BHC (LINDANE)	0.050	U	
GAMMA-CHLORDANE	0.050	U	
HEPTACHLOR	0.050	U	
HEPTACHLOR EPOXIDE	0.050	U	
METHOXYCHLOR	0.50	U	
TOXAPHENE	1.0	U	

PROJ_NO: 4202

SDG: 2334 MEDIA: WATER DATA FRACTION: P

nsample FC-MW-05-0103
samp_date 1/31/2003
lab_id WT0233-3
qc_type NM
units UG/L
Pct_Solids 0
DUP_OF:

nsample
samp_date
lab_id
qc_type
units
Pct_Solids
DUP_OF:

FC-MW-06-0103 1/31/2003 WT0233-1 NM UG/L 0

 nsample
 FC-MW-20R-0103

 samp_date
 1/31/2003

 lab_id
 WT0233-2

 qc_type
 NM

 units
 UG/L

 Pct_Solids
 0

 DUP_OF:
 0

 Parameter
 Result
 Val Qual Code

 TOTAL PETROLEUM HYDROCARBONS
 500
 U

Parameter	Result	Val Qual	Qual Code
TOTAL PETROLEUM HYDROCARBONS	500	U	

Parameter	Result	Val Qual	Qual Code
TOTAL PETROLEUM HYDROCARBONS	8200		

APPENDIX B

RESULTS AS REPORTED BY THE LABORATORY

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03

Received Date: 02/01/03
Extraction Date: 02/07/03
Analysis Date: 02/07/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-7 Client ID: 0103-DUP-01

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
75-71-8	Dichlorodifluoromethane	U	5	1.0	5	5	0.2
74-87-3	Chloromethane	ប	5	1.0	5	5	0.3
75-01-4	Vinyl chloride	υ	2	1.0	2	2	0.1
74-83-9	Bromomethane	U	5	1.0	5	5	0.9
75-00-3	Chloroethane	Ü	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	υ	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	ט	5	1.0	5	5	0.3
75-15-0	Carbon Disulfide	υ	5	1.0	5	5	0.2
74-88-4	Iodomethane	U	10	1.0	10	10	0.2
107-02-8	Acrolein	ប	50	1.0	50	50	3
75-09-2	Methylene Chloride	U	5	1.0	5	5	0.3
67-64-1	Acetone	ט	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	υ	100	1.0	100	100	78
156-60-5	trans-1,2-Dichloroethene	υ	5	1.0	- 5	- 5	0.7
107-05-1	Allyl Chloride	σ	10	1.0	10	10	1
75-05-8	Acetonitrile	U	50	1.0	50	50	6
126-99-8	Chloroprene	U	10	1.0	10	10	2
126-98-7	Methacrylonitrile	U	50	1.0	50	50	11
107-12-0	Propionitrile	ប	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	υ	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	บ	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	υ	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	U	5	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	U	5	1.0	5	5	1
80-62-6	Methyl Methacrylate	ប	10	1.0	10	10	1
67-66-3	Chloroform	บ	5 -	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	υ	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	5	0.7
78-93-3	2-Butanone	σ	10	1.0	10	10	2
71-43-2	Benzene	υ	5	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	Ü	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	ับ	5	1.0	5	5	0.3
79-01-6	Trichloroethene	σ	5	1.0	5	5	0.6
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	υ	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	υ	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	σ	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	U	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	ប	5	1.0	5	5	0.5
108-88-3	Toluene	U	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	U	10	1.0	10	10	2
127-18-4	Tetrachloroethene	U	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	U	5	1.0	5	5	0.4
			÷				

Page 01 of 02 S5820.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03 Received Date: 02/01/03

Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-7 Client ID: 0103-DUP-01

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
79-00-5	1,1,2-Trichloroethane	υ	5	1.0	5	5	0.3
124-48-1	Dibromochloromethane	U	5	1.0	5	5	0.3
106-93-4	1,2-Dibromoethane	σ	5	1.0	5	5	0.2
591-78-6	2-Hexanone	υ	10	1.0	10	10	2
108-90-7	Chlorobenzene	U	5	1.0	5	5	0.2
100-41-4	Ethylbenzene	U	5	1.0	5	5	0.1
630-20-6	1,1,1,2-Tetrachloroethane	υ	5	1.0	5	5	0.2
1330-20-7	Xylenes (total)	U	5	1.0	5	5	0.2
	m+p-Xylenes	U	5	1.0	5	5	0.2
95-47-6	o-Xylene	U	5	1.0	5	5	0.2
100-42-5	Styrene	U	5	1.0	5	5	0.3
75-25-2	Bromoform	U	5	1.0	5	5	0.4
110-57-6	trans-1,4-Dichloro-2-Butene	U	10	1.0	10	10	0.5
79-34-5	1,1,2,2-Tetrachloroethane	υ	. 5	1.0	5	. 5	0.4
96-18-4	1,2,3-Trichloropropane	U	11 ° - 51	1.0	5	5	0.9
76-01-1	Pentachloroethane	U	10	1.0	10	10	2
96-12-8	1,2-Dibromo-3-Chloropropane	υ	5	1.0	5	5	0.6
1868-53-7	Dibromofluoromethane		90%				
17060-07-0	1,2-Dichloroethane-D4		111%				
2037-26-5	Toluene-D8		93%				
460-00-4	P-Bromofluorobenzene		96%				

Page 02 of 02 S5820.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-8 Client ID: 0103-DUP-06

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL		
75-71-8	Dichlorodifluoromethane	ប	5	1.0	5	5	0.2		
74-87-3	Chloromethane	υ	5	1.0	5	5	0.3		
75-01-4	Vinyl chloride	ū	2	1.0	2	2	0.1		
74-83-9	Bromomethane	ប	5	1.0	5	5	0.9		
75-00-3	Chloroethane	σ	5	1.0	5	5	0.3		
75-69-4	Trichlorofluoromethane	σ	5	1.0	5	5	0.2		
75-35-4	1,1-Dichloroethene	J	1	1.0	5	5	0.3		
75-15-0	Carbon Disulfide	ប	5	1.0	5	5	0.2		
74-88-4	Iodomethane	σ	10	1.0	10	10	0.2		
107-02-8	Acrolein	ប	50	1.0	50	50	3		
75-09-2	Methylene Chloride	υ	5	1.0	5	5	0.3		
67-64-1	Acetone	U	10	1.0	10	10	3		
78-83-1	Isobutyl Alcohol	U	100	1.0	100	100	78		
156-60-5	trans-1,2-Dichloroethene	E	3400	1.0	5	5	0.7		
107-05-1	Allyl Chloride	U -	10	1.0	10	10	3. 1. 1 S	:	•
75-05-8	Acetonitrile	U . 1	50	1.0	50	50	6		
126-99-8	Chloroprene	σ	10	1.0	10	10	2		
126-98-7	Methacrylonitrile	Ü	50	1.0	50	50	11		
107-12-0	Propionitrile	υ	50	1.0	50	50	16		
75-34-3	1,1-Dichloroethane	ប	5	1.0	5	5	0.1		
107-13-1	Acrylonitrile	U	10	1.0	10	10	0.8		
108-05-4	Vinyl Acetate	υ	5	1.0	5	5	0.3		
156-59-2	cis-1,2-Dichloroethene	E	1200	1.0	5	5	0.5		
540-59-0	1,2-Dichloroethylene (total)	E	4600	1.0	5	5	1		
80-62-6	Methyl Methacrylate	ប	10	1.0	10	10	1		
67-66-3	Chloroform	ប	5	1.0	5	5	0.2		
56-23-5	Carbon Tetrachloride	U	5	1.0	5	5	0.3		
71-55-6	1,1,1-Trichloroethane	σ	5	1.0	5	5	0.7		
78-93-3	2-Butanone	U	10	1.0	10	10	2		
71-43-2	Benzene	J	1	1.0	5	5	0.1		
97-63-2	Ethyl Methacrylate	U	10	1.0	10	10	0.9		
107-06-2	1,2-Dichloroethane	υ	5	1.0	5	5	0.3		
79-01-6	Trichloroethene	U	5	1.0	5	5	0.6		
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4		
7 8-87 - 5	1,2-Dichloropropane	υ	5	1.0	5	5	0.2		
75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2		
10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4		
123-91-1	1,4-Dioxane	υ	100	1.0	100	100	43		
110-75-8	2-Chloroethylvinylether	υ	5	1.0	5	5	0.5		
108-88-3	Toluene	U	5	1.0	5	5	0.2		
108-10-1	4-methyl-2-pentanone	υ	10	1.0	10	10	2		
127-18-4	Tetrachloroethene	υ	5	1.0	5	5	0.4		
10061-02-6	trans-1,3-Dichloropropene	ប	5	1.0	5	5	0.4		

Page 01 of 02 S5828.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/07/03 Analysis Date: 02/07/03

Report Date: 03/05/2003 Matrix: WATER % Solids: NA Lab ID: WT0246-8 Client ID: 0103-DUP-06

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adi.POL	Adj.MDL	
79-00-5	1,1,2-Trichloroethane	U	5	1.0	. 5	5	0.3	
124-48-1	Dibromochloromethane	υ	5	1.0	5	5	0.3	
106-93-4	1,2-Dibromoethane	บ	5	1.0	5	5	0.2	
591-78-6	2-Hexanone	σ	10	1.0	10	10	2	
108-90-7	Chlorobenzene	U	5	1.0	5	5	0.2	
100-41-4	Ethylbenzene	υ	5	1.0	5	5	0.1	
630-20-6	1,1,1,2-Tetrachloroethane	υ	5	1.0	5	5	0.2	
1330-20-7	Xylenes (total)	J	0.3	1.0	5	5	0.2	
	m+p-Xylenes	J	0.3	1.0	5	5	0.2	
95 -47 -6	o-Xylene	U	5	1.0	5	5	0.2	
100-42-5	Styrene	υ	5	1.0	5	5	0.3	
75-25-2	Bromoform	σ	5	1.0	5	5	0.4	
110-57-6	trans-1,4-Dichloro-2-Butene	σ	10	1.0	10	10	0.5	
79-34-5	1,1,2,2-Tetrachloroethane	υ.	5	1.0	-		0.4	Shada a madada.
96-18-4	1,2,3-Trichloropropane	υ.	5	1.0	- 5	5		Northbergera
76-01-1	Pentachloroethane	U	10	1.0	10	10	2	
96-12-8	1,2-Dibromo-3-Chloropropane	υ	5	1.0	5	5	0.6	,
1868-53-7	Dibromofluoromethane		84%		-	•	0.0	
17060-07-0	1,2-Dichloroethane-D4		104%					
2037-26-5	Toluene-D8		90%					
460-00-4	P-Bromofluorobenzene		92%					

Page 02 of 02 \$5828.D

Data File: \\Target_server\GG\chem\gcms-s.i\s020703.b\S5828.D Page 5

Report Date: 05-Mar-2003 09:28

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-8

Operator : JSS Sample Location:

Sample Matrix: WATER Analysis Type: VOA

Inj Date: 07-FEB-2003 20:11

Client SDG: CTO233-4

Client Smp ID: 0103-DUP-06 Sample Date: 01-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
ı					

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-8

Client ID: 0103-DUP-06-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
75-71-8	Dichlorodifluoromethane	U	100	20	5	100	5
74-87-3	Chloromethane	U	100	20	5	100	6
75-01-4	Vinyl chloride	υ	40	20	2	40	2
74-83-9	Bromomethane	U	100	20	5	100	19
75-00-3	Chloroethane	ប	100	20	5	100	5
75-69-4	Trichlorofluoromethane	υ	100	20	5	100	5
75-35-4	1,1-Dichloroethene	U	100	20	5	100	6
75-15-0	Carbon Disulfide	ប	100	20	5	100	3
74-88-4	Iodomethane	U	200	20	10	200	5
107-02-8	Acrolein	U	1000	20	50	1000	59
75-09-2	Methylene Chloride	JB	23	20	5	100	7
67-64-1	Acetone	U	200	20	10	200	55
78-83-1	Isobutyl Alcohol	U	2000	20	100	2000	1600
156-60-5	trans-1,2-Dichloroethene		4000	20	5	100	14
107-05-1	Allyl Chloride	σ	200	20	10	200	28
75-05-8	Acetonitrile	U	1000	20	50	1000	120
126-99-8	Chloroprene	U	200	20	10	200	32
126-98-7	Methacrylonitrile	υ	1000	20	50	1000	210
107-12-0	Propionitrile	U	1000	20	50	1000	320
75-34-3	1,1-Dichloroethane	U	100	20	5	100	2
107-13-1	Acrylonitrile	U	200	20	10	200	16
108-05-4	Vinyl Acetate	U	100	20	5	100	7
156-59-2	cis-1,2-Dichloroethene		1300	20	5	100	9
540-59-0	1,2-Dichloroethylene (total)		5300	20	5	100	23
80-62-6	Methyl Methacrylate	U	200	20	10	200	28
67-66-3	Chloroform	U	100	20	.5	100	4
56-23-5	Carbon Tetrachloride	U	100	20	5	100	6
71-55-6	1,1,1-Trichloroethane	U	100	20	5	100	14
78-93-3	2-Butanone	U	200	20	10	200	37
71-43-2	Benzene	U	100	20	5	100	3
97-63-2	Ethyl Methacrylate	U	200	20	10	200	. 18
107-06-2	1,2-Dichloroethane	U	100	20	5	100	6
79-01-6	Trichloroethene	U	100	20	5	100	12
74-95-3	Dibromomethane	U	100	20	5	100	7
78-87-5	1,2-Dichloropropane	U	100	20	5	100	4
75-27-4	Bromodichloromethane	U	100	20	5	100	5
10061-01-5	cis-1,3-dichloropropene	U	100	20	5	100	9
123-91-1	1,4-Dioxane	U.	2000	20	100	2000	870
110-75-8	2-Chloroethylvinylether	U	100	20	5	100	10
108-88-3	Toluene	U	100	20	5	100	4
108-10-1	4-methyl-2-pentanone	U	200	20	10	200	36
127-18-4	Tetrachloroethene	U	100	20	5	100	7
10061-02-6	trans-1,3-Dichloropropene	U	. 100	20	5	100	8

Page 01 of 02 S5841.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-8

Client ID: 0103-DUP-06-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	POL	Adj.PQL	Adi.MDL
79-00-5	1,1,2-Trichloroethane	บ	100	20	5	100	6
124-48-1	Dibromochloromethane	Ū	100	20	5	100	5
106-93-4	1,2-Dibromoethane	ប	100	20	5	100	4
591-78-6	2-Hexanone	บ	200	20	10	200	31
108-90-7	Chlorobenzene	Ū	100	20	5	100	4
100-41-4	Ethylbenzene	σ	100	20	5	100	2
630-20-6	1,1,1,2-Tetrachloroethane	ប	100	20	5	100	4
1330-20-7	Xylenes (total)	σ	100	20	. 5	100	4
	m+p-Xylenes	σ	100	20	5	100	4
95-47-6	o-Xylene	υ	100	20	5	100	3
100-42-5	Styrene	σ	100	20	5	100	6
75-25-2	Bromoform	σ	100	20	5	100	9
110-57-6	trans-1,4-Dichloro-2-Butene	U	200	20	10	200	10
79-34-5	1,1,2,2-Tetrachloroethane	ט	100	20	5	100	- 8
96-18-4	1,2,3-Trichloropropane	υ	100	20	- 5	100	18
76-01-1	Pentachloroethane	U	200	20	10	200	32
96-12-8	1,2-Dibromo-3-Chloropropane	U	100	20	5	100	13
1868-53-7	Dibromofluoromethane		89%				
17060-07-0	1,2-Dichloroethane-D4		103%				
2037-26-5	Toluene-D8		90%				
460-00-4	P-Bromofluorobenzene		100%				

Page 02 of 02 S5841.D

Data File: \\Target server\GG\chem\gcms-s.i\s021003.b\S5841.D Page 5

Report Date: 05-Mar-2003 10:34

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-8

Operator : JEY Sample Location:

Sample Matrix: WATER

Analysis Type: VOA

Inj Date: 10-FEB-2003 17:52

Number TICs found: 0

Client SDG: CTO233-4

Client Smp ID: 0103-DUP-06-DL

Sample Date: 01-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
		,		

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03
Received Date: 02/04/03
Extraction Date: 02/10/03
Analysis Date: 02/10/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-9 Client ID: S1MW-5-0103

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adi.POL	Adj.MDL
75-71-8	Dichlorodifluoromethane	υ	5	1.0	5	5	0.2
74-87-3	Chloromethane	υ	5	1.0	5	5	0.3
75-01-4	Vinyl chloride	ซ	2	1.0	2	2	0.1
74-83-9	Bromomethane	บ	5	1.0	5	5	0.9
75-00-3	Chloroethane	ប	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	υ	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	ប	5	1.0	5	5	0.3
75-15-0	Carbon Disulfide	σ	5	1.0	5	5	0.2
74-88-4	Iodomethane	ប	10	1.0	10	10	0.2
107-02-8	Acrolein	ប	50	1.0	50	50	3
75-09-2	Methylene Chloride	U	5	1.0	5	5	0.3
67-64-1	Acetone	ប	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	ប	100	1.0	100	100	78
156-60-5	trans-1,2-Dichloroethene	U	.5	1.0	-5	5	0.7
107-05-1	Allyl Chloride	υ .	10	1.0	10	10	1
75-05-8	Acetonitrile	ប	50	1.0	50	50	6
126-99-8	Chloroprene	υ	10	1.0	10	10	2
126-98-7	Methacrylonitrile	ΰ	50	1.0	50	50	11
107-12-0	Propionitrile	U	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	σ	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	υ	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	U	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	υ	5	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	U	5	1.0	5	5	1
80-62-6	Methyl Methacrylate	ប	10	1.0	10	10	1
67-66-3	Chloroform	U	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	ប	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	5	0.7
78-93-3	2-Butanone	U	10	1.0	10	10	2
71-43-2	Benzene	บ	5	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	U	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	υ	5	1.0	5	5	0.3
79-01-6	Trichloroethene	ប	5	1.0	5	5	0.6
74-95-3	Dibromomethane	Ū	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	ប	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	ប	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	υ	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	ប	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	บ	5	1.0	5	5 .	0.5
108-88-3	Toluene	U	5	1.0	, 5	5	0.2
108-10-1	4-methyl-2-pentanone	U	10	1.0	10	10	2
127-18-4	Tetrachloroethene	U	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	Ū	5	1.0	5	5	0.4
			•		~	_	J.7

Page 01 of 02 \$5837.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03
Received Date: 02/04/03
Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-9 Client ID: S1MW-5-0103

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL	
79-00-5	1,1,2-Trichloroethane	ΰ	5	1.0	5	5	0.3	
124-48-1	Dibromochloromethane	U	5	1.0	5	5	0.3	
106-93-4	1,2-Dibromoethane	U	5	1.0	5	5	0.2	
591-78-6	2-Hexanone	ប	10	1.0	10	10	2	
108-90-7	Chlorobenzene	ប	5	1.0	5	5	0.2	
100-41-4	Ethylbenzene	ប	5	1.0	5	5	0.1	
630-20-6	1,1,1,2-Tetrachloroethane	σ	5	1.0	5	5	0.2	
1330-20-7	Xylenes (total)	σ	5	1.0	5	5	0.2	
	m+p-Xylenes	σ	5	1.0	5	5	0.2	
95-47-6	o-Xylene	U	5	1.0	5	5	0.2	
100-42-5	Styrene	U	5	1.0	5	5	0.3	
75-25-2	Bromoform	U	5	1.0	5	5	0.4	
110-57-6	trans-1,4-Dichloro-2-Butene	σ	10	1.0	10	10	0.5	
79-34-5	1,1,2,2-Tetrachloroethane	υ	5	1.0	-5	5	0.4	1 23 1 1 1 1 1 1 1
96-18-4	1,2,3-Trichloropropane	: U	5	1.0	5	. 5	0.9	
76-01-1	Pentachloroethane	υ	10	1.0	10	10	2	
96-12-8	1,2-Dibromo-3-Chloropropane	U	5	1.0	5	5	0.6	
1868-53-7	Dibromofluoromethane		90%					
17060-07-0	1,2-Dichloroethane-D4		104%					
2037-26-5	Toluene-D8		91%					
460-00-4	P-Bromofluorobenzene		94%					

Page 02 of 02 S5837.D

Data File: \\Target_server\GG\chem\gcms-s.i\s021003.b\S5837.D Report Date: 26-Feb-2003 14:06 Page 5

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc Lab Smp Id: WT0246-9

Operator : JEY Sample Location:

Sample Matrix: WATER
Analysis Type: VOA
Inj Date: 10-FEB-2003 15:15

Client SDG: CTO233-4

Client Smp ID: S1MW-5-0103 Sample Date: 01-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

	CAS NUMBER	COMPOUND NAME	RT ======	EST. CONC.	. Q
Į					

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-6

Client ID: S1MW-7-0103 SDG: CTO233-4

Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
75-71-8	Dichlorodifluoromethane	U	5	1.0	5	5	0.2
74-87-3	Chloromethane	U	5	1.0	5	5	0.3
75-01-4	Vinyl chloride	U	2	1.0	2	2	0.1
74-83-9	Bromomethane	U	5	1.0	5	5	0.9
75-00-3	Chloroethane	U	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	U	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	U	5	1.0	5	5	0.3
75-15-0	Carbon Disulfide	U	5	1.0	5	5	0.2
74-88-4	Iodomethane	υ	10	1.0	10	10	0.2
107-02-8	Acrolein	Ū	50	1.0	50	50	3
75-09-2	Methylene Chloride	υ	5	1.0	5	5	0.3
67-64-1	Acetone	U	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	U	100	1.0	100	100	78
156-60-5	trans-1,2-Dichloroethene	U	<u>:</u> 5	1.0	5	5	Name of the Control o
107-05-1	Allyl Chloride	U	10	1.0	10	10	n Aus i , skiloztie
75-05-8	Acetonitrile	U	: 50	1.0	50	50	6 . 4
126-99-8	Chloroprene	U	10	1.0	10	10	2
126-98-7	Methacrylonitrile	U	50	1.0	50	50	11
107-12-0	Propionitrile	U	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	U	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	U	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	U	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	ΰ	5	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	U	5	1.0	5	5	1
80-62-6	Methyl Methacrylate	U	10	1.0	10	10	1
67-66-3	Chloroform	σ	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	U	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	5	0.7
78-93-3	2-Butanone	Ü	10	1.0	10	10	2
71-43-2	Benzene	U	5	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	σ	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	U	5	1.0	5	5	0.3
79-01-6	Trichloroethene	U	5	1.0	5	5	0.6
74-95-3	Dibromomethane	Ū	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	U	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	ΰ	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	U	5	1.0	5	5	0.5
108-88-3	Toluene	U	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	σ	10	1.0	10	10	2
127-18-4	Tetrachloroethene	σ	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	υ	5	1.0	5	5	0.4

Page 01 of 02 S5819.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03

Extraction Date: 02/07/03 Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-6 Client ID: S1MW-7-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQI	. Adj.MDL			
79-00-5	1,1,2-Trichloroethane	U	5	1.0	5	5	0.3			
124-48-1	Dibromochloromethane	U	5	1.0	5	5	0.3			
106-93-4	1,2-Dibromoethane	U	5	1.0	5	5	0.2			
591-78-6	2-Hexanone	ប	10	1.0	10	10	2			
108-90-7	Chlorobenzene	υ	5	1.0	5	5	0.2			
100-41-4	Ethylbenzene	σ	5	1.0	5	5	0.1			
630-20-6	1,1,1,2-Tetrachloroethane	U .	5	1.0	5	5	0.2			
1330-20-7	Xylenes (total)	σ .	5	1.0	5	5	0.2			
•	m+p-Xylenes	U	5	1.0	. 5	5	0.2			
95-47-6	o-Xylene	ប	5	1.0	5	5	0.2			
100-42-5	Styrene	υ	5	1.0	5	5	0.3			
75-25-2	Bromoform	U	5	1.0	5	5	0.4			
110-57-6	trans-1,4-Dichloro-2-Butene	υ	10	1.0	10	10	0.5			
7.9-34-5	1,1,2,2-Tetrachloroethane	บ	5	1.0	5	÷ 5	0.4	· . · · ·	12	
96-18-4	1,2,3-Trichloropropane	· U	5	1.0	5	5.	0.9	• .	* :	
76-01-1	Pentachloroethane	ū	10	1.0	10	10	. 2			
96-12-8	1,2-Dibromo-3-Chloropropane	σ	5	1.0	5	5	0.6			
1868-53-7	Dibromofluoromethane		92%							
17060-07-0	1,2-Dichloroethane-D4		105%							
2037-26-5	Toluene-D8		94%							
460-00-4	P-Bromofluorobenzene		97%							

Page 02 of 02 S5819.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/03/03 Received Date: 02/04/03

Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-2

Client ID: S9MW-12-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

	CAS#	Compound	Flags	Results	DF	PQL	Adi POT	Adj.MOL
	75-71-8	Dichlorodifluoromethane	U	5	1.0	5	5	0.2
	74-87-3	Chloromethane	U	5	1.0	5	5	0.3
	75-01-4	Vinyl chloride	Ū	2	1.0	2	2	0.1
	74-83-9	Bromomethane	ט	5	1.0	5	5	0.9
	75-00-3	Chloroethane	U	. 5	1.0	5	5	0.3
	75-69-4	Trichlorofluoromethane	ซ	5	1.0	5	5	0.2
	75-35-4	1.1-Dichloroethene	U	5	1.0	5	5	0.3
	75-15-0	Carbon Disulfide	Ū	5	1.0	5	5	0.2
	74-88-4	Iodomethane	π	10	1.0	10	10	0.2
	107-02-8	Acrolein	U	50	1.0	50	50	3
	75-09-2	Methylene Chloride	Ū	5	1.0	5	5	0.3
	67-64-1	Acetone	U	10	1.0	10	10	3
	78-83-1	Isobutyl Alcohol	ט ט	100	1.0	100	100	78
3 5 7 F	156-60-5	trans-1,2-Dichloroethene	ט	5	1.0	-5		1 2 0 3/7
	107-05-1		σ.	·10	1.0			1
And the second of the second	75-05-8	Acetonitrile	Ū	50	1.0	50	50	6
	126-99-8	Chloroprene	υ	10	1.0	10	10	2
	126-99-8	Methacrylonitrile	บ	50	1.0	50	50	11
	107-12-0	Propionitrile	U	50 50	1.0	50	50	16
	75-34-3	1.1-Dichloroethane	U	5	1.0	5	5	0.1
	107-13-1	Acrylonitrile	υ	10	1.0	10	10	0.8
	108-05-4	Vinyl Acetate	บ	5	1.0	5	5	0.3
	156-59-2	cis-1,2-Dichloroethene	U	5	1.0	5	5	0.5
	540-59-0	1,2-Dichloroethylene (total)	ซ	5	1.0	5	5	1
	80-62-6	Methyl Methacrylate	บ	10	1.0	10	10	1
	67-66-3	Chloroform	บ	5	1.0	5	5	0.2
	56-23-5	Carbon Tetrachloride	U	5	1.0	5	5	0.3
	71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	. 5	0.7
	78-93-3	2-Butanone	υ	10	1.0	10	10	2
	78-33-3	Benzene	υ	5	1.0	5	5	0.1
	97-63-2	Ethyl Methacrylate	บ	10	1.0	10	10	0.9
	107-06-2	1,2-Dichloroethane	ט	5	1.0	5	5	0.3
	79-01-6	Trichloroethene	U	5	1.0	5	5	0.6
	74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
	78-87-5	1,2-Dichloropropane	U	5	1.0	5	5	0.2
	75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2
	10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4
	123-91-1	1,4-Dioxane	U	100	1.0	100	100	43
	110-75-8	•	υ	5	1.0	5	5	0.5
	10-75-8	2-Chloroethylvinylether Toluene	U	5	1.0	5	5	0.3
			Ū	5 10	1.0	10	10	2
	108-10-1 127-18-4	4-methyl-2-pentanone Tetrachloroethene	U U	5	1.0	5	5	0.4
			U	5	1.0	5	5	0.4
	10061-02-6	trans-1,3-Dichloropropene	U	5	1.0	5	5	V.4

Page 01 of 02 S5822.D

 $\operatorname{suph}(x) = \operatorname{suph}(x) = \operatorname{suph}(x) = \operatorname{suph}(x)$

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/03/03
Received Date: 02/04/03
Extraction Date: 02/07/03
Analysis Date: 02/07/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-2 Client ID: S9MW-12-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
79-00-5	1,1,2-Trichloroethane	υ	5	1.0	5	5	0.3
124-48-1	Dibromochloromethane	\mathbf{r}	5	1.0	5	5	0.3
106-93-4	1,2-Dibromoethane	U	5	1.0	5	5	0.2
591-78-6	2-Hexanone	ប	10	1.0	10	10	2
108-90-7	Chlorobenzene	U	5	1.0	5	5	0.2
100-41-4	Ethylbenzene	U	5	1.0	5	5	0.1
630-20-6	1,1,1,2-Tetrachloroethane	υ	5	1.0	5	5	0.2
1330-20-7	Xylenes (total)	ប	5	1.0	5	5	0.2
	m+p-Xylenes	\mathbf{u}	5	1.0	5	5	0.2
95-47-6	o-Xylene	υ	5	1.0	5	5	0.2
100-42-5	Styrene	σ	5	1.0	5	5	0.3
75-25-2	Bromoform	σ	5	1.0	5	5	0.4
110-57-6	trans-1,4-Dichloro-2-Butene	U	10	1.0	10	10	0.5
79-34-5	1,1,2,2-Tetrachloroethane	U	5	1.0	5	5	0.4
96-18-4	1,2,3-Trichloropropane	\mathbf{v}	. 5	1.0	5	5	.0.9
76-01-1	Pentachloroethane	ប	10	1.0	10	10	2
96-12-8	1,2-Dibromo-3-Chloropropane	Ū	5	1.0	5	5	0.6
1868-53-7	Dibromofluoromethane		87%				
17060-07-0	1,2-Dichloroethane-D4		102%				
2037-26-5	Toluene-D8		93%				
460-00-4	P-Bromofluorobenzene		100%				

Page 02 of 02 S5822.D

Data File: \Target_server\GG\chem\gcms-s.i\s020703.b\S5822.D Page 5

Report Date: 26-Feb-2003 11:52

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-2

Operator : JSS Sample Location:

Sample Matrix: WATER

Analysis Type: VOA

Inj Date: 07-FEB-2003 16:52

Client SDG: CTO233-4

Client Smp ID: S9MW-12-0103

Sample Date: 03-FEB-2003

Sample Point:

Date Received: 04-FEB-2003 12:00

Level: LOW

Number TICs found: 0 (ug/

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

CAS NUMBER	COMPOUND NAME	RT ======	EST. CONC.	Q =====
	-			

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03

Extraction Date: 02/04/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-3 Client ID: S9MW-14-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQI	Adj.MDL
75-71-8	Dichlorodifluoromethane	U	5	1.0	5	5	0.2
74-87-3	Chloromethane	U	5	1.0	5	5	0.3
75-01-4	Vinyl chloride		2	1.0	2	2	0.1
74-83-9	Bromomethane	σ	5	1.0	5	5	0.9
75-00-3	Chloroethane	U	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	U	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	J	0.9	1.0	5	5	0.3
75-15-0	Carbon Disulfide	U	5	1.0	5	5	0.2
74-88-4	Iodomethane	U	10	1.0	10	10	0.2
107-02-8	Acrolein	U	50	1.0	50	50	3
75-09-2	Methylene Chloride	Ū	5	1.0	5	5	0.3
67-64-1	Acetone	U	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	U	100	1.0	100	100	78
156-60-5	trans-1,2-Dichloroethene	E	.3400	1.0	. 45	a ::5	0.7
107-05-1	Allyl Chloride	υ.	10	1.0	10		200 1 126
75-05-8	Acetonitrile	U	50	1.0	50	50 -	6
126-99-8	Chloroprene	U	10	1.0	10	10	2
126-98-7	Methacrylonitrile	ប	50	1.0	50	50	11
107-12-0	Propionitrile	U	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	บ	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	U	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	U	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	E	1200	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	E	4600	1.0	5	5	1
80-62-6	Methyl Methacrylate	υ	10	1.0	10	10	1
67-66-3	Chloroform	ช	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	U	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	υ	5	1.0	5	5	0.7
78-93-3	2-Butanone	ซ	10	1.0	10	10	2
71-43-2	Benzene	J	1	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	σ	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	บ	5	1.0	5	5	0.3
79-01-6	Trichloroethene	U	5	1.0	5	5	0.6
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	U	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	U	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	U	5	1.0	5	5	0.5
108-88-3	Toluene	U	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	Ü	10	1.0	10	10	2
127-18-4	Tetrachloroethene	U	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	σ	5	1.0	5	5	0.4

Page 01 of 02 \$5823.D

was in the contract of

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03

Received Date: 02/04/03
Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-3

Client ID: S9MW-14-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

79-00-5 1,1,2-Trichloroethane U 5 1.0 5 5 0.3 124-48-1 Dibromochloromethane U 5 1.0 5 5 0.3 106-93-4 1,2-Dibromoethane U 5 1.0 5 5 0.2 591-78-6 2-Hexanone U 10 1.0 10 10 2	
106-93-4 1,2-Dibromoethane U 5 1.0 5 5 0.2	
591-78-6 2-Hexanone U 10 1.0 10 10 2	
108-90-7 Chlorobenzene U 5 1.0 5 5 0.2	
100-41-4 Ethylbenzene U 5 1.0 5 5 0.1	
630-20-6 1,1,1,2-Tetrachloroethane U 5 1.0 5 5 0.2	
1330-20-7 Xylenes (total) J 0.3 1.0 5 5 0.2	
m+p-Xylenes J 0.3 1.0 5 5 0.2	
95-47-6 o-Xylene U 5 1.0 5 5 0.2	
100-42-5 Styrene U 5 1.0 5 5 0.3	
75-25-2 Bromoform U 5 1.0 5 5 0.4	
110-57-6 trans-1,4-Dichloro-2-Butene U 10 1.0 10 10 0.5	
79-34-5 1,1,2,2-Tetrachloroethane 20 5 1.0 55-23 5 22.0(4 - 2.5) 22.0	. 1
96-18-4 1,2,3-Trichloropropane U 5 1.0 5 5 0.9	172.4
76-01-1 Pentachloroethane U 10 1.0 10 10 2	
96-12-8 1,2-Dibromo-3-Chloropropane U 5 1.0 5 5 0.6	
1868-53-7 Dibromofluoromethane 84%	
17060-07-0 1,2-Dichloroethane-D4 101%	
2037-26-5 Toluene-D8 92%	
460-00-4 P-Bromofluorobenzene 96%	

Page 02 of 02 S5823.D

Data File: \Target_server\GG\chem\gcms-s.i\s020703.b\S5823.D Page 5

Report Date: 05-Mar-2003 09:26

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-3

Operator : JSS Sample Location:

Sample Matrix: WATER

Analysis Type: VOA

Inj Date: 07-FEB-2003 17:25

Number TICs found: 0

Client SDG: CTO233-4

Client Smp ID: S9MW-14-0103 Sample Date: 01-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======	==========	=====
		f		

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03

Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-3

Client ID: S9MW-14-0103-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

75-71-8 Dichlorodifluoromethane U 100 20 5 100 5	
74-87-3 Chloromethane U 100 20 5 100 6	
75-01-4 Vinyl chloride U 40 20 2 40 2	
74-83-9 Bromomethane U 100 20 5 100 19	
75-00-3 Chloroethane U 100 20 5 100 5	
75-69-4 Trichlorofluoromethane U 100 20 5 100 5	
75-35-4 1,1-Dichloroethene U 100 20 5 100 6	
75-15-0 Carbon Disulfide U 100 20 5 100 3	
74-88-4 Iodomethane U 200 20 10 200 5	
107-02-8 Acrolein U 1000 20 50 1000 59	
75-09-2 Methylene Chloride JB 20 20 5 100 7	
67-64-1 Acetone U 200 20 10 200 55	
78-83-1 Isobutyl Alcohol U 2000 20 100 2000 1600	
156-60-5 trans-1,2+Dichloroethene 3000 20 .50 1000	43.2
107-05-1 Allyl Chloride U 200 20 10 200 28 3.3.3.3.3.3	
75-05-8 Acetonitrile U 1000 20 50 1000 120	
126-99-8 Chloroprene U 200 20 10 200 32	
126-98-7 Methacrylonitrile U 1000 20 50 1000 210	
107-12-0 Propionitrile U 1000 20 50 1000 320	
75-34-3 1,1-Dichloroethane U 100 20 5 100 2	
107-13-1 Acrylonitrile U 200 20 10 200 16	
108-05-4 Vinyl Acetate U 100 20 5 100 7	
156-59-2 cis-1,2-Dichloroethene 1000 20 5 100 9	
540-59-0 1,2-Dichloroethylene (total) 4100 20 5 100 23	
80-62-6 Methyl Methacrylate U 200 20 10 200 28	
67-66-3 Chloroform U 100 20 5 100 4	
56-23-5 Carbon Tetrachloride U 100 20 5 100 6	
71-55-6 1,1,1-Trichloroethane U 100 20 5 100 14	
78-93-3 2-Butanone U 200 20 10 200 37	
71-43-2 Benzene U 100 20 5 100 3	
97-63-2 Ethyl Methacrylate U 200 20 10 200 18	
107-06-2 1,2-Dichloroethane U 100 20 5 100 6	
79-01-6 Trichloroethene U 100 20 5 100 12	
74-95-3 Dibromomethane U 100 20 5 100 7	
78-87-5 1,2-Dichloropropane U 100 20 5 100 4	
75-27-4 Bromodichloromethane U 100 20 5 100 5	
10061-01-5 cis-1,3-dichloropropene U 100 20 5 100 9	
123-91-1 1,4-Dioxane U 2000 20 100 2000 870	
110-75-8 2-Chloroethylvinylether U 100 20 5 100 10	
108-88-3 Toluene U 100 20 5 100 4	
108-10-1 4-methyl-2-pentanone U 200 20 10 200 36	
127-18-4 Tetrachloroethene U 100 20 5 100 7	
10061-02-6 trans-1,3-Dichloropropene U 100 20 5 100 8	

Page 01 of 02 S5838.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03

Received Date: 02/04/03 Extraction Date: 02/10/03 Analysis Date: 02/10/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-3

Client ID: S9MW-14-0103-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
79-00-5	1,1,2-Trichloroethane	U	100	20	5	100	6
124-48-1	Dibromochloromethane	U	100	20	5	100	5
106-93-4	1,2-Dibromoethane	U	100	20	5	100	4
591-78-6	2-Hexanone	U	200	20	10	200	31
108-90-7	Chlorobenzene	υ	100	20	5	100	4
100-41-4	Ethylbenzene	ប	100	20	5	100	2
630-20-6	1,1,1,2-Tetrachloroethane	υ	100	20	5	100	4
1330-20-7	Xylenes (total)	σ	100	20	5	100	4
	m+p-Xylenes	U	100	20	5	100	4
95-47-6	o-Xylene	υ	100	20	5	100	3
100-42-5	Styrene	ប	100	20	5	100	6
75-25-2	Bromoform	υ	100	20	5	100	9
110-57-6	trans-1,4-Dichloro-2-Butene	ซ	200	20	10	200	10
79-34-5.	1,1,2,2-Tetrachloroethane	σ	100	20	5	100	12 12 8 15 12 13 14
96-18-4	1,2,3-Trichloropropane	. U	100	20	5	100	18 22 2
76-01-1	Pentachloroethane	σ	200	20	10	200	32
96-12-8	1,2-Dibromo-3-Chloropropane	σ	100	20	5	100	13
1868-53-7	Dibromofluoromethane		83%				
17060-07-0	1,2-Dichloroethane-D4		93%				
2037-26-5	Toluene-D8		888				
460-00-4	P-Bromofluorobenzene		96%				

Page 02 of 02 S5838.D

Data File: \\Target_server\GG\chem\gcms-s.i\s021003.b\S5838.D Page 5

Report Date: 05-Mar-2003 10:33

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-3

Operator : JEY Sample Location:

Sample Matrix: WATER

Analysis Type: VOA Inj Date: 10-FEB-2003 15:48 Client SDG: CTO233-4

Client Smp ID: S9MW-14-0103-DL

Sample Date: 01-FEB-2003

Sample Point:

Date Received: 04-FEB-2003 12:00

Level: LOW

Number TICs found: 0 CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0
=======================================		=======	======================================	=====

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03

Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-4 Client ID: S9MW-15-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
75-71-8	Dichlorodifluoromethane	U	5	1.0	5	5	0.2
74-87-3	Chloromethane	ប	5	1.0	5	5	0.3
75-01-4	Vinyl chloride		2	1.0	2	2	0.1
74-83-9	Bromomethane	υ	5	1.0	5	5	0.9
75-00-3	Chloroethane	υ	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	ប	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	J	0.4	1.0	5	5	0.3
75-15-0	Carbon Disulfide	ប	5	1.0	5	5	0.2
74-88-4	Iodomethane	ប	10	1.0	10	10	0.2
107-02-8	Acrolein	υ	50	1.0	50	50	3
75-09-2	Methylene Chloride	ប	5	1.0	5	5	0.3
67-64-1	Acetone	ប	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	σ	100	1.0	100	100	78
156-60-5	trans-1,2-Dichloroethene	E	720	1.0	.5	. 5	. 1071 0.7
107-05-1	Allyl Chloride	U	. 10	1.0	10	10	a it j i alturustrad
75-05-8	Acetonitrile	ប	: 50	1.0	50	50	6
126-99-8	Chloroprene	ប	10	1.0	10	10	2
126-98-7	Methacrylonitrile	U	50	1.0	50	50	11
107-12-0	Propionitrile	U	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	U	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	U	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	ប	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	E	260	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	E	980	1.0	5	5	1
80-62-6	Methyl Methacrylate	U	10	1.0	10	10	1
67-66-3	Chloroform	ប	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	ប	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	5	0.7
78-93 - 3	2-Butanone	U	10	1.0	10	10	2
71-43-2	Benzene	J	0.3	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	U	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	U	5	1.0	5	5	0.3
79-01-6	Trichloroethene	J	2	1.0	5	5	0.6
74-95-3	Dibromomethane	υ	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	Ū	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	U	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	υ	. 5	1.0	5	5	0.5
108-88-3	Toluene	U	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	U	10	1.0	10	10	2
127-18-4	Tetrachloroethene	υ	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	U	5	1.0	5	5	0.4

Page 01 of 02 S5824.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03

Received Date: 02/04/03 Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-4

Client ID: S9MW-15-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
79-00-5	1,1,2-Trichloroethane	ប	5	1.0	5	5	0.3
124-48-1	Dibromochloromethane	υ	5	1.0	5	5	0.3
106-93-4	1,2-Dibromoethane	υ	5	1.0	5	5	0.2
591-78-6	2-Hexanone	U	10	1.0	10	10	2
108-90-7	Chlorobenzene	U	5	1.0	5	5	0.2
100-41-4	Ethylbenzene	U	5	1.0	5	5	0.1
630-20-6	1,1,1,2-Tetrachloroethane	υ	5	1.0	5	5	0.2
1330-20-7	Xylenes (total)	υ	5	1.0	5	5	0.2
	m+p-Xylenes	U	5	1.0	5	5	0.2
95-47-6	o-Xylene	υ	5	1.0	5	5	0.2
100-42-5	Styrene	σ	5	1.0	5	5	0.3
75-25-2	Bromoform	υ	5	1.0	5	5	0.4
110-57-6	trans-1,4-Dichloro-2-Butene	ប	10	1.0	10	10	0.5
79-34-5	1,1,2,2-Tetrachloroethane	U	5	1.0	. 5	. 5.	
96-18-4	1,2,3-Trichloropropane	ប	5	1.0	-5	5	0.9
76-01-1	Pentachloroethane	υ .	10	1.0	10	. 10	2
96-12-8	1,2-Dibromo-3-Chloropropane	υ	5	1.0	5	5	0.6
1868-53-7	Dibromofluoromethane		90%				
17060-07-0	1,2-Dichloroethane-D4		103%				
2037-26-5	Toluene-D8		92%				
460-00-4	P-Bromofluorobenzene		97%				
	,						

Page 02 of 02 \$5824.D

Data File: \\Target_server\GG\chem\gcms-s.i\s020703.b\S5824.D Page 5

Report Date: 05-Mar-2003 09:27

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc Lab Smp Id: WT0246-4 Operator: JSS

Sample Location:

Sample Matrix: WATER

Analysis Type: VOA Inj Date: 07-FEB-2003 17:58 Client SDG: CTO233-4

Client Smp ID: S9MW-15-0103 Sample Date: 01-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

Number TICs found: 0

 CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======	=========	=====

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03

Received Date: 02/04/03
Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-4

Client ID: S9MW-15-0103-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

75-71-8 Dichlorodifluoromethane U 25 5.0 5 25 1 74-87-3 Chloromethane U 25 5.0 5 25 1 75-01-4 Vinyl chloride U 10 5.0 2 10 0.5 74-83-9 Bromomethane U 25 5.0 5 25 5 74-83-9 Bromomethane U 25 5.0 5 25 5 75-09-3 Chloroethane U 25 5.0 5 25 1 75-69-4 Trichlorofluoromethane U 25 5.0 5 25 1 75-69-4 Trichlorofluoromethane U 25 5.0 5 25 1 75-15-0 Carbon Disulfide U 25 5.0 5 25 1 75-15-0 Carbon Disulfide U 25 5.0 5 25 0.8 74-88-4 Iodomethane U 25 5.0 5 25 0.8 74-88-4 Iodomethane U 25 5.0 5 25 0.8 74-88-4 Iodomethane U 25 5.0 5 25 0.8 74-88-1 Isobutyl Alcohol U 50 5.0 50 250 15 75-09-2 Methylene Chloride U 50 5.0 50 250 15 75-09-2 Methylene Chloride U 50 5.0 50 250 15 76-69-6 Trans-1,2-Dichloroethene U 50 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 390 156-69-8 Acetonitrile U 250 5.0 50 250 30 126-99-8 Chloroprene U 50 5.0 10 50 8 126-99-8 Chloroprene U 50 5.0 50 250 53 126-99-8 Chloroprene U 250 5.0 50 250 53 107-11-1 Acrylonitrile U 250 5.0 50 250 53 107-13-1 Acrylonitrile U 50 5.0 50 250 53 107-13-1 Acrylonitrile U 50 5.0 50 250 53 107-13-1 Acrylonitrile U 50 5.0 50 250 53 108-65-90 1,2-Dichloroethylene (total) 70 50 50 50 50 50 50 50 50 50 50 50 50 50	CAS#	Compound	Flags	Results	D F	PQL	Adj.PQ	L Adj.MDL
75-01-4 Vinyl chloride U 10 5.0 2 10 0.5 74-83-9 Bromomethane U 25 5.0 5 25 5 75-00-3 Chloroethane U 25 5.0 5 25 1 75-69-4 Trichlorofluoromethane U 25 5.0 5 25 1 75-69-4 Trichloroethene U 25 5.0 5 25 1 75-35-4 1,1-Dichloroethene U 25 5.0 5 25 1 75-35-4 1,1-Dichloroethene U 55 5.0 5 25 1 75-15-0 Carbon Disulfide U 55 5.0 5 25 0.8 74-88-4 Iodomethane U 50 5.0 10 50 1 107-02-8 Acrolein U 50 5.0 10 50 1 107-02-8 Acrolein U 50 5.0 10 50 15 75-09-2 Methylene Chloride JB 7 5.0 5 25 25 67-64-1 Acetone U 50 5.0 10 50 14 78-83-1 Isobutyl Alcohol U 500 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 390 126-99-8 Chloroprene U 50 5.0 10 50 30 126-99-8 Chloroprene U 50 5.0 10 50 88 107-12-0 Propionitrile U 250 5.0 50 250 53 107-12-0 Propionitrile U 50 5.0 50 250 53 107-12-0 Propionitrile U 50 5.0 50 250 53 107-13-3 1,1-Dichloroethane U 50 5.0 10 50 4 108-05-4 Vinyl Acetate U 50 5.0 5 25 25 2 156-59-2 cis-1,2-Dichloroethene U 50 5.0 5 25 25 2 156-59-2 cis-1,2-Dichloroethene U 50 5.0 5 25 25 2 156-63-5 Carbon Tetrachloride U 50 5.0 5 25 25 2 156-63-5 Carbon Tetrachloride U 50 5.0 5 25 25 2 156-63-5 Carbon Tetrachloride U 50 5.0 5 25 25 2 17-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 25 3 18-33-3 2-Butanone U 50 5.0 5 25 25 3 18-39-3 Benzene U 55 5.0 5 25 25 3 18-39-3 Benzene U 55 5.0 5 25 25 3 18-39-3 Dibromomethane U 25 5.0 5 25 25 3 18-39-1 1,2-Dichloroethane U 25 5.0 5 25 25 3 18-39-1 1,1-Dichloroethane U 25 5.0 5 25 25 2 18-39-7-3-2 Ethyl Methacrylate U 50 5.0 5 5 25 25 3 18-39-1 1,1-Dichloroethane U 25 5.0 5 25 25 3 18-39-1 1,1-Dichloroethane U 25 5.0 5 25 25 2 18-39-7-3-2 Ethyl Methacrylate U 50 5.0 5 5 25 3 18-39-1 1,1-Dichloroethane U 25 5.0 5 25 25 3 18-39-1 1,1-Dichloroethane U 25 5.0 5 25 25 3 18-39-7-3-2 Ethyl Methacrylate U 50 5.0 5 5 25 3 18-39-7-3-2 Ethyl Methacrylate U 50 5.0 5 5 25 11 18-39-1 1,1-Dichloroethane U 25 5.0 5 25 25 1	75-71-8	Dichlorodifluoromethane	U	25	5.0	5	25	1
74-83-9 Bromomethane U 25 5.0 5 25 5 75-00-3 Chloroethane U 25 5.0 5 25 1 75-69-4 Trichlorofluoromethane U 25 5.0 5 25 1 75-35-4 1,1-Dichloroethene U 25 5.0 5 25 0.8 75-15-0 Carbon Disulfide U 25 5.0 5 25 0.8 74-88-4 Todomethane U 50 5.0 50 250 11 107-02-8 Acrolein U 250 5.0 50 250 15 75-09-2 Methylene Chloride JB 7 5.0 5 25 2 67-64-1 Acetone U 50 5.0 10 50 14 78-83-1 Isobutyl Alcohol U 50 5.0 50 25 3 167-05-8 Acetonitrile U	74-87-3	Chloromethane	ប	25	5.0	5	25	1
75-00-3 Chloroethane U 25 5.0 5 25 1 75-69-4 Trichlorofluoromethane U 25 5.0 5 25 1 75-35-4 1,1-Dichloroethene U 25 5.0 5 25 0.8 74-88-4 Iodomethane U 25 5.0 5 25 0.8 107-02-8 Acrolein U 250 5.0 50 250 15 75-09-2 Methylene Chloride JB 7 5.0 5 25 2 67-64-1 Acetone U 50 5.0 10 50 14 78-83-1 Isobutyl Alcohol U 50 5.0 10 50 14 78-83-1 Isobutyl Alcohol U 50 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 50 25 25 3 30 10 50	75-01-4	Vinyl chloride	U	10	5.0	2	10	0.5
75-69-4 Trichlorofluoromethane U 25 5.0 5 25 1 75-35-4 1,1-Dichloroethene U 25 5.0 5 25 1 75-35-0 Carbon Disulfide U 25 5.0 5 25 0.8 74-88-4 Iodomethane U 250 5.0 50 250 1 107-02-8 Acrolein U 250 5.0 50 250 15 75-09-2 Methylene Chloride JB 7 5.0 10 50 14 78-83-1 Isobutyl Alcohol U 500 5.0 100 500 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 -7 150-8-8 Acetonitrile U 250 5.0 50 250 30 126-99-8 Chloroprene U 50 5.0 50 250 53 107-12-0 Propionitril	74-83-9	Bromomethane	U	25	5.0	5	25	5
75-35-4 1,1-Dichloroethene U 25 5.0 5 25 0.8 75-15-0 Carbon Disulfide U 25 5.0 5 25 0.8 74-88-4 Iodomethane U 50 5.0 10 50 1 107-02-8 Acrolein U 250 5.0 50 250 15 75-09-2 Methylene Chloride JB 7 5.0 5 25 2 67-64-1 Acetone U 50 5.0 10 50 14 78-83-1 Isobutyl Alcohol U 50 5.0 100 50 39 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 .7 75-05-8 Acetonitrile U 50 5.0 10 50 .7 107-12-0 Propionitrile U 250 5.0 50 250 .79 75-34-3 1,1-Dichloroethane	75-00-3	Chloroethane	U	25	5.0	5	25	1
75-15-0 Carbon Disulfide U 25 5.0 5 25 0.8 74-88-4 Iodomethane U 50 5.0 10 50 1 107-02-8 Acrolein U 25 5.0 50 25 15 75-09-2 Methylene Chloride JB 7 5.0 5 25 2 67-64-1 Acetone U 500 5.0 10 50 14 78-83-1 Isobutyl Alcohol U 500 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 39 107-05-1 Allyl Chloride U 50 5.0 10 50 25 3 107-05-2 Actonitrile U 250 5.0 50 250 30 126-99-8 Chloroprene U 25 5.0 50 25 33 107-12-0 Propionitrile </td <td>75-69-4</td> <td>Trichlorofluoromethane</td> <td>U</td> <td>25</td> <td>5.0</td> <td>5</td> <td>25</td> <td>1</td>	75-69-4	Trichlorofluoromethane	U	25	5.0	5	25	1
74-88-4 Iodomethane U 50 5.0 10 50 1 107-02-8 Acrolein U 250 5.0 50 250 15 75-09-2 Methylene Chloride JB 7 5.0 50 25 2 67-64-1 Acetone U 50 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene 520 5.0 100 50 390 156-60-5 trans-1,2-Dichloroethene 520 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 390 156-60-5 trans-1,2-Dichloroethene U 50 5.0 10 50 390 157-05-8 Acetonitrile U 250 5.0 50 250 30 126-99-8 Chloropreme U 250 5.0 50 250 53 107-13-1 Accylonitrile U<	75-35-4	1,1-Dichloroethene	U	25	5.0	5	25	1
107-02-8 Acrolein	75-15-0	Carbon Disulfide	U	25	5.0	5	25	0.8
75-09-2 Methylene Chloride JB 7 5.0 5 25 2 67-64-1 Acetone U 50 5.0 10 50 14 78-83-1 Isobutyl Alcohol U 500 5.0 100 500 390 156-60-5 trans-1,2-Dichloroethene 520 5.0 5 25 3 107-05-1 Allyl Chloride U 50 5.0 10 50 7 75-05-8 Acetonitrile U 250 5.0 50 250 30 126-99-8 Chloroprene U 550 5.0 10 50 8 126-99-8 Chloroprene U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 250 5.0 50 250 79 108-05-4 Vinyl Acetate U 250 5.0 50 250 250 30 106-59-2 cis-1,2-Dichloroethene 210 5.0 5 25 25 10-67-66-3 Chloroform U 25 5.0 5 25 25 6 80-62-6 Methyl Methacrylate U 25 5.0 5 25 25 0.9 66-23-5 Carbon Tetrachloride U 25 5.0 5 25 25 0.9 71-43-2 Benzene U 25 5.0 5 25 25 0.6 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.6 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.9 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.9 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.9 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.9 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.6 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.6 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.6 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.6 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.6 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 25 0.6 97-63-2 Ethyl Methacrylate U 25 5.0 5 25 3 97-901-6 Trichloroethane U 25 5.0 5 25 3 97-901-6 Trichloroethane U 25 5.0 5 25 1	74-88-4	Iodomethane	U	50	5.0	10	50	1
67-64-1 Acetome U 50 5.0 10 50 390 146-8-83-1 Isobutyl Alcohol U 500 5.0 100 500 390 156-60-5 trans-1,2-Dichloroethene 520 5.0 5 25 3 107-05-1 Allyl Chloride U 50 5.0 5.0 50 7 75-05-8 Acetonitrile U 250 5.0 50 250 30 126-99-8 Chloroprene U 50 5.0 50 250 30 126-99-8 Chloroprene U 250 5.0 50 250 53 126-98-7 Methacrylonitrile U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 25 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 25 5.0 50 25 0.6 107-13-1 Acrylonitrile U 50 5.0 50 25 0.6 107-13-1 Acrylonitrile U 50 5.0 50 25 0.6 107-13-1 Acrylonitrile U 50 5.0 5.0 50 25 0.6 106-05-4 Vinyl Acetate U 25 5.0 5 25 25 2 156-59-2 Cis-1,2-Dichloroethene 51 210 5.0 5 25 25 2 16-23-5 Carbon Tetrachloride U 25 5.0 5 25 0.9 1,2-Dichloroethylene (total) 740 5.0 5 25 25 0.9 1-56-23-5 Carbon Tetrachloride U 25 5.0 5 25 0.9 1-1-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 0.9 17-43-2 Benzene U 25 5.0 5 25 0.9 17-63-3 Ethyl Methacrylate U 50 5.0 5 0 5 25 0.9 107-63-2 Ethyl Methacrylate U 50 5.0 5 0 5 25 0.9 107-63-2 Ethyl Methacrylate U 50 5.0 5 25 0.6 107-63-3 Dibromomethane U 25 5.0 5 25 1 107-01-6 Trichloroethene U 25 5.0 5 25 1 107-01-6 Trichloroethene U 25 5.0 5 25 1 107-01-6 Trichloroethene U 25 5.0 5 25 1 107-01-6 Trichloropropane U 25 5.0 5 25 1 10061-01-5 Cis-1,3-dichloropropene U 25 5.0 5 25 25 1 10061-01-5 Cis-1,3-dichloropropene U 25 5.0 5 25 25 2	107-02-8	Acrolein	U	250	5.0	50	250	15
78-83-1 Isobutyl Alcohol U 500 5.0 100 500 390 156-60-5 trans-1,2-Dichloroethene 520 5.0 5 25 3 107-05-1 Allyl Chloride U 50 5.0 10 50 7 75-05-8 Acetonitrile U 250 5.0 10 50 8 126-99-8 Chloroprene U 250 5.0 10 50 8 126-98-7 Methacrylonitrile U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 25 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 5 25 2 107-13-1 Acrylonitrile U <td>75-09-2</td> <td>Methylene Chloride</td> <td>JB</td> <td>7</td> <td>5.0</td> <td>5</td> <td>25</td> <td>2</td>	75-09-2	Methylene Chloride	JB	7	5.0	5	25	2
156-60-5 trans-1,2-Dichloroethene 520 5.0 5 25 3 3 107-05-1 Allyl Chloride U 50 5.0 10 50 7 75-05-8 Acetonitrile U 250 5.0 50 250 30 126-99-8 Chloroprene U 50 5.0 10 50 8 126-98-7 Methacrylonitrile U 250 5.0 50 250 53 107-12-0 Propionitrile U 250 5.0 50 250 53 107-12-0 Propionitrile U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 25 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 50 50 4 108-05-4 Vinyl Acetate U 25 5.0 5 25 2 156-59-2 cis-1,2-Dichloroethene 210 5.0 5 25 2 2 156-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 2 1 1 1 1 1 1 1 1 1	67-64-1	Acetone	υ	50	5.0	10	50	14
107-05-1 Allyl Chloride	78-83-1	Isobutyl Alcohol	Ŭ	500	5.0	100	500	390
75-05-8 Acetonitrile U 250 5.0 50 250 30 126-99-8 Chloroprene U 50 5.0 10 50 8 126-98-7 Methacrylonitrile U 250 5.0 50 250 53 107-12-0 Propionitrile U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 25 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 10 50 4 108-05-4 Vinyl Acetate U 25 5.0 5 25 2 156-59-2 cis-1,2-Dichloroethene U 50 5.0 5 25 2 156-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 25 80-62-6 Methyl Methacrylate U 50 5.0 10 50 7 67-66-3 Chloroform U 25 5.0 5 25 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 25 2 11-43-2 Benzene U 25 5.0 5 25 3 78-93-3 2-Butanone U 25 5.0 5 25 3 78-93-3 Ethyl Methacrylate U 50 5.0 10 50 9 71-43-2 Benzene U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 25 1 10061-01-5 cis-1,3-dichloropropene U 550 5.0 5 25 25 1 10061-01-5 cis-1,3-dichloropropene U 550 5.0 5 25 25 1 10061-01-5 cis-1,3-dichloropropene U 550 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	156-60-5	trans-1,2-Dichloroethene		520	5.0	5.	-25	5 x 5 3 1
126-99-8 Chloroprene U 50 5.0 10 50 8 126-98-7 Methacrylonitrile U 250 5.0 50 250 53 107-12-0 Propionitrile U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 25 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 5 25 0.6 108-05-4 Vinyl Acetate U 25 5.0 5 25 2 156-59-2 cis-1,2-Dichloroethene 210 5.0 5 25 2 540-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 2 56-23-6 Methyl Methacrylate U 50 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 0.9 71-55-6 1,1,1-Trichloroethane <	107-05-1	Allyl Chloride	U	50	5.0	10	- 50	7
126-98-7 Methacrylonitrile U 250 5.0 50 250 79 107-12-0 Propionitrile U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 25 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 10 50 4 108-05-4 Vinyl Acetate U 25 5.0 5 25 2 156-59-2 cis-1,2-Dichloroethene 210 5.0 5 25 2 80-62-6 Methyl Methacrylate U 50 5.0 5 25 6 80-62-6 Methyl Methacrylate U 25 5.0 5 25 0.9 67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 0.9 78-93-3 2-Butanone U 25 5.0 5 25 3 76-63-2 Ethyl Me	75-05-8	Acetonitrile	U	250	5.0	50	250	30
107-12-0 Propionitrile U 250 5.0 50 250 79 75-34-3 1,1-Dichloroethane U 25 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 10 50 4 108-05-4 Vinyl Acetate U 25 5.0 5 25 2 156-59-2 cis-1,2-Dichloroethylene (total) 740 5.0 5 25 2 540-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 6 80-62-6 Methyl Methacrylate U 50 5.0 10 50 7 67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 3 78-93-3 2-Butanone U 25 5.0 5 25 3 76-63-2 Ethyl M	126-99-8	Chloroprene	U	50	5.0	10	50	8
75-34-3 1,1-Dichloroethane U 25 5.0 5 25 0.6 107-13-1 Acrylonitrile U 50 5.0 10 50 4 108-05-4 Vinyl Acetate U 25 5.0 5 25 2 156-59-2 cis-1,2-Dichloroethylene (total) 740 5.0 5 25 2 540-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 2 80-62-6 Methyl Methacrylate U 50 5.0 10 50 7 67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 2 71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 5 25 0.6 107-06-2 1,2	126-98-7	Methacrylonitrile	บ	250	5.0	50	250	53
107-13-1 Acrylonitrile U 50 5.0 10 50 4 108-05-4 Vinyl Acetate U 25 5.0 5 25 2 156-59-2 cis-1,2-Dichloroethene 210 5.0 5 25 2 540-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 6 80-62-6 Methyl Methacrylate U 50 5.0 10 50 7 67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 2 71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 5 25 1 79-01-6 Trichloroethan	107-12-0	Propionitrile	U	250	5.0	50	250	79
108-05-4 Vinyl Acetate U 25 5.0 5 25 2 156-59-2 cis-1,2-Dichloroethene 210 5.0 5 25 2 540-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 6 80-62-6 Methyl Methacrylate U 50 5.0 10 50 7 67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 2 71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 25 5.0 5 25 3 71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 74-95-3 Dibromomethane	75-34-3	1,1-Dichloroethane	U	25	5.0	5	25	0.6
156-59-2 cis-1,2-Dichloroethene 210 5.0 5 25 2 540-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 6 80-62-6 Methyl Methacrylate U 50 5.0 10 50 7 67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 2 71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 50 5.0 10 50 9 71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethene U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2	107-13-1	Acrylonitrile	U	50	5.0	10	50	4
540-59-0 1,2-Dichloroethylene (total) 740 5.0 5 25 6 80-62-6 Methyl Methacrylate U 50 5.0 10 50 7 67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 2 71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 50 5.0 10 50 9 71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichl	108-05-4	Vinyl Acetate	ប	25	5.0	5	25	2
80-62-6 Methyl Methacrylate U 50 5.0 10 50 7 67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 2 71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 50 5.0 10 50 9 71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethane U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodich	156-59-2	cis-1,2-Dichloroethene		210	5.0	5	25	2
67-66-3 Chloroform U 25 5.0 5 25 0.9 56-23-5 Carbon Tetrachloride U 25 5.0 5 25 2 71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 50 5.0 10 50 9 71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethene U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 550 5.0 100 500 220	540-59-0	1,2-Dichloroethylene (total)		740	5.0	5	25	6
56-23-5 Carbon Tetrachloride U 25 5.0 5 25 2 71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 50 5.0 10 50 9 71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethane U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene	80-62-6	Methyl Methacrylate	ប	50	5.0	10	50	7
71-55-6 1,1,1-Trichloroethane U 25 5.0 5 25 3 78-93-3 2-Butanone U 50 5.0 10 50 9 71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethene U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 550 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	67-66-3	Chloroform	U	25	5.0	. 5	25	0.9
78-93-3 2-Butanone U 50 5.0 10 50 9 71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethane U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	56-23-5	Carbon Tetrachloride	ប	25	5.0	5	25	2
71-43-2 Benzene U 25 5.0 5 25 0.6 97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethene U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 50 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	71-55-6	1,1,1-Trichloroethane	Ū	25	5.0	5	25	3
97-63-2 Ethyl Methacrylate U 50 5.0 10 50 4 107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethene U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	78-93-3	2-Butanone	υ	50	5.0	10	50	9
107-06-2 1,2-Dichloroethane U 25 5.0 5 25 1 79-01-6 Trichloroethene U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	71-43-2	Benzene	U	25	5.0	5	25	0.6
79-01-6 Trichloroethene U 25 5.0 5 25 3 74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	97-63-2	Ethyl Methacrylate	ប	50	5.0	10	50	4
74-95-3 Dibromomethane U 25 5.0 5 25 2 78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	107-06-2	1,2-Dichloroethane	υ	25	5.0	5	25	1
78-87-5 1,2-Dichloropropane U 25 5.0 5 25 1 75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	79-01-6	Trichloroethene	υ	25	5.0	5	25	3
75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	74-95-3	Dibromomethane	υ	25	5.0	5	25	2
75-27-4 Bromodichloromethane U 25 5.0 5 25 1 10061-01-5 cis-1,3-dichloropropene U 25 5.0 5 25 2 123-91-1 1,4-Dioxane U 500 5.0 100 500 220	78-87-5	1,2-Dichloropropane	ប	25	5.0	5	25	1
123-91-1 1,4-Dioxane U 500 5.0 100 500 220	75-27-4		U	25	5.0	5	25	1
123-91-1 1,4-Dioxane U 500 5.0 100 500 220	10061-01-5	cis-1,3-dichloropropene	U	25	5.0	5	25	2
110-75-8 2-Chloroethylvinylether U 25 5.0 5 25 3	123-91-1		Ŭ	500	5.0	100	500	220
	110-75-8	2-Chloroethylvinylether	U	25	5.0	5	25	3
108-88-3 Toluene U 25 5.0 5 25 0.9	108-88-3		U	25	5.0	5	25	0.9
108-10-1 4-methyl-2-pentanone U 50 5.0 10 50 9	108-10-1	4-methyl-2-pentanone	U	50	5.0	10	50	9
127-18-4 Tetrachloroethene U 25 5.0 5 25 2	127-18-4	~ -	υ	25	5.0	5	25	2
10061-02-6 trans-1,3-Dichloropropene U 25 5.0 5 25 2	10061-02-6	trans-1,3-Dichloropropene	υ	25			25	2

Page 01 of 02 S5839.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03

Received Date: 02/04/03
Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-4

Client ID: S9MW-15-0103-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
79-00-5	1,1,2-Trichloroethane	U	25	5.0	5	25	2
124-48-1	Dibromochloromethane	σ	25	5.0	5	25	1
106-93-4	1,2-Dibromoethane	υ	25	5.0	5	25	1
591-78-6	2-Hexanone	U	50	5.0	10	50	8
108-90-7	Chlorobenzene	U	25	5.0	5	25	1
100-41-4	Ethylbenzene	U	25	5.0	5	25	0.6
630-20-6	1,1,1,2-Tetrachloroethane	U	25	5.0	5	25	1.0
1330-20-7	Xylenes (total)	U	25	5.0	5	25	1
	m+p-Xylenes	υ	25	5.0	5	25	0.9
95-47-6	o-Xylene	ប	25	5.0	5	25	0.8
100-42-5	Styrene	U	25	5.0	5	25	1
75-25-2	Bromoform	ប	25	5.0	5	25	2
110-57-6	trans-1,4-Dichloro-2-Butene	υ	50	5.0	10	50	2
79-34-5	1,1,2,2-Tetrachloroethane	υ	. 25	5.0	5	25	2
96-18-4	1,2,3-Trichloropropane	U.	25	5.0	·5	25	5
76-01-1	Pentachloroethane	σ	50	5.0	10	50	8
96-12-8	1,2-Dibromo-3-Chloropropane	U	25	5.0	5	25	3
1868-53-7	Dibromofluoromethane		91%				
17060-07-0	1,2-Dichloroethane-D4		102%				
2037-26-5	Toluene-D8		90%				
460-00-4	P-Bromofluorobenzene		94%				

Page 02 of 02 \$5839.D

Data File: \\Target_server\GG\chem\gcms-s.i\s021003.b\S5839.D Page 5

Report Date: 05-Mar-2003 10:34

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-4

Operator : JEY Sample Location:

Sample Matrix: WATER Analysis Type: VOA

Inj Date: 10-FEB-2003 16:21

Client SDG: CTO233-4

Client Smp ID: S9MW-15-0103-DL

Sample Date: 01-FEB-2003

Sample Point:

Date Received: 04-FEB-2003 12:00

Level: LOW

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		======	==========	=====
l				!

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03
Received Date: 02/04/03
Extraction Date: 02/10/03
Analysis Date: 02/10/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-5

Client ID: S9MW-21-0103

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
75~71~8	Dichlorodifluoromethane	υ	5	1.0	5	5	0.2
74-87-3	Chloromethane	U	5	1.0	5	5	0.3
75-01-4	Vinyl chloride	U	2	1.0	2	2	0.1
74-83-9	Bromomethane	U	5	1.0	5	5	0.9
75-00-3	Chloroethane	ប	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	υ	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	U	5	1.0	5	5	0.3
75-15-0	Carbon Disulfide	υ	5	1.0	5	5	0.2
74-88-4	Iodomethane	U	10	1.0	10	10	0.2
107-02-8	Acrolein	U	50	1.0	50	50	3
75-09-2	Methylene Chloride	ប	5	1.0	5	5	0.3
67-64-1	Acetone	U	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	U	100	1.0	100	100	78
156-60-5	trans-1,2-Dichloroethene		190	1.0	√5	·· 5	0.7
107-05-1	Allyl Chloride	U	10	1.0	10	10	83 x 1 - 7
75-05-8	Acetonitrile	U .	50	1.0	50	50	. 6
126-99-8	Chloroprene	U	10	1.0	10	10	2
126-98-7	Methacrylonitrile	U	50	1.0	50	50	11
107-12-0	Propionitrile	U	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	ΰ	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	U	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	U	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene		87	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)		280	1.0	5	5	1
80-62-6	Methyl Methacrylate	U	. 10	1.0	10	10	1
67-66-3	Chloroform	U	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	υ	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	5	0.7
78-93-3	2-Butanone	υ	10	1.0	10	10	2
71-43-2	Benzene	U	5	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	U	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	U	5	1.0	5	5	0.3
79-01-6	Trichloroethene	U	5	1.0	5	5	0.6
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	U	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	Ŭ	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	U	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	υ	5	1.0	5	5	0.5
108-88-3	Toluene	υ	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	ប	10	1.0	10	10	2
127-18-4	Tetrachloroethene	U	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	ប	5	1.0	5	5	0.4

Page 01 of 02 S5836.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03 Received Date: 02/04/03 Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-5

Client ID: S9MW-21-0103

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL		
79-00-5	1,1,2-Trichloroethane	U	5	1.0	5	5	0.3		
124-48-1	Dibromochloromethane	ប	5	1.0	5	5	0.3		
106-93-4	1,2-Dibromoethane	U	5	1.0	5	5	0.2		
591-78-6	2-Hexanone	σ	10	1.0	10	10	2		
108-90-7	Chlorobenzene	U	5	1.0	5	5	0.2		
100-41-4	Ethylbenzene	U	5	1.0	5	5	0.1		
630-20-6	1,1,1,2-Tetrachloroethane	σ	5	1.0	5	5	0.2		
1330-20-7	Xylenes (total)	Ū	5	1.0	5	5	0.2		
	m+p-Xylenes	U	5	1.0	5	5	0.2		
95-47-6	o-Xylene	Ü	5	1.0	5	5	0.2		
100-42-5	Styrene	υ	5	1.0	5	5	0.3		
75-25-2	Bromoform	υ	5	1.0	5	5	0.4		
110-57-6	trans-1,4-Dichloro-2-Butene	U	10	1.0	10	10	0.5		
79-34-5	1,1,2,2-Tetrachloroethane	υ.	5	1.0	-5	. 5	0.4	11 2 1 22 31	7 6
96-18-4	1,2,3-Trichloropropane	υ	5	1.0	5	: - 5	0.9		
76-01-1	Pentachloroethane	σ	10	1.0	10	10	2		
96-12-8	1,2-Dibromo-3-Chloropropane	ប	5	1.0	5	5	0.6		
1868-53-7	Dibromofluoromethane		78%						
17060-07-0	1,2-Dichloroethane-D4		91%						
2037-26-5	Toluene-D8		888						
460-00-4	P-Bromofluorobenzene		90%						

Page 02 of 02 S5836.D

Data File: \\Target_server\GG\chem\gcms-s.i\s021003.b\S5836.D Page 5

Report Date: 05-Mar-2003 10:33

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-5

Operator : JEY Sample Location:

Sample Matrix: WATER Analysis Type: VOA

Inj Date: 10-FEB-2003 14:42

Client SDG: CTO233-4

Client Smp ID: S9MW-21-0103

Sample Date: 02-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	======	============	=====
1				
1	I	l	l '	

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03
Received Date: 02/04/03
Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-13 Client ID: S9MW-22-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL.	Adj.PQ	L Adj.MDL
75-71-8	Dichlorodifluoromethane	U	5	1.0	5	5	0.2
74-87-3	Chloromethane	υ	5	1.0	5	5	0.3
75-01-4	Vinyl chloride	υ	2	1.0	2	2	0.1
74-83-9	Bromomethane	U	5	1.0	5	5	0.9
75-00-3	Chloroethane	U	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	σ	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	J	0.3	1.0	5	5	0.3
75-15-0	Carbon Disulfide	υ	5	1.0	5	5	0.2
74-88-4	Iodomethane	U	10	1.0	10	10	0.2
107-02-8	Acrolein	υ	50	1.0	50	50	3
75-09-2	Methylene Chloride	ប	5	1.0	5	5	0.3
67-64-1	Acetone	υ	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	U	100	1.0	100	100	78
 156-60-5.	trans-1,2-Dichloroethene	E	850	1.0			0.37
 107-05-1.	Allyl Chloride	υ	10	1.0	10	10	11 .
75-05-8	Acetonitrile	U	50	1.0	50	50	6
126-99-8	Chloroprene	ซ	10	1.0	10	10	2
126-98-7	Methacrylonitrile	υ	50	1.0	50	50	11
107-12-0	Propionitrile	U	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	υ	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	u	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	U	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	E	300	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	E	1200	1.0	5	5	1
80-62-6	Methyl Methacrylate	U	10	1.0	10	10	1
67-66-3	Chloroform	U	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	ប	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	ប	5	1.0	5	5	0.7
78-93-3	2-Butanone	บ	10	1.0	10	10	2
71-43-2	Benzene	J	0.7	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	υ	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	U	5	1.0	5	5	0.3
79-01-6	Trichloroethene	υ	5	1.0	5	5	0.6
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	บ	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	ប	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	u	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	U	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	σ	5	1.0	5	5	0.5
108-88-3	Toluene	U	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	σ	10	1.0	10	10	2
127-18-4	Tetrachloroethene	υ	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	Ŭ	5	1.0	5	5	0.4

Page 01 of 02 S5830.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03
Received Date: 02/04/03
Extraction Date: 02/07/03
Analysis Date: 02/07/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-13 Client ID: S9MW-22-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
79-00-5	1,1,2-Trichloroethane	U	5	1.0	5	5	0.3
124-48-1	Dibromochloromethane	υ	5	1.0	5	5	0.3
106-93-4	1,2-Dibromoethane	υ	5	1.0	5	5	0.2
591-78-6	2-Hexanone	υ	10	1.0	10	10	2
108-90-7	Chlorobenzene	U	5	1.0	5	5	0.2
100-41-4	Ethylbenzene	σ	5	1.0	5	5	0.1
630-20-6	1,1,1,2-Tetrachloroethane	บ	5	1.0	5	5	0.2
1330-20-7	Xylenes (total)	U	5	1.0	5	5	0.2
	m+p-Xylenes	U	5	1.0	5	5	0.2
95-47-6	o-Xylene	U	5	1.0	5	5	0.2
100-42-5	Styrene	υ	5	1.0	5	5	0.3
75-25-2	Bromoform	บ	5	1.0	5	5	0.4
110-57-6	trans-1,4-Dichloro-2-Butene	σ	10	1.0	10	10	0.5
79-34-5	1,1,2,2-Tetrachloroethane	υ	5	1.0	:5	. 5	0 . 4
96-18-4	1,2,3-Trichloropropane	υ	5	1.0	:· 5	5	.0.9
76-01-1	Pentachloroethane	U	10	1.0	10	10	2 .
96-12-8	1,2-Dibromo-3-Chloropropane	ប	5	1.0	5	5	0.6
1868-53-7	Dibromofluoromethane		91%				
17060-07-0	1,2-Dichloroethane-D4		105%				
2037-26-5	Toluene-D8		90%				
460-00-4	P-Bromofluorobenzene		95%				

Page 02 of 02 S5830.D

Data File: \Target server\GG\chem\gcms-s.i\s020703.b\S5830.D Page 5

Report Date: 05-Mar-2003 09:28

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc Lab Smp Id: WT0246-13

Operator : JSS Sample Location:

Sample Matrix: WATER

Analysis Type: VOA
Inj Date: 07-FEB-2003 21:17

Client SDG: CTO233-4

Client Smp ID: S9MW-22-0103 Sample Date: 02-FEB-2003 Sample Point:

Date Received: 04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	=======	===========	=====
<u> </u>				

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03

Received Date: 02/04/03

Extraction Date: 02/10/03 Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-13

Client ID: S9MW-22-0103-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
75-71-8	Dichlorodifluoromethane	υ	50	10	5	50	2
74-87-3	Chloromethane	U	50	10	5	50	3
75~01-4	Vinyl chloride	υ	20	10	2	20	1
74-83-9	Bromomethane	ប	50	10	5	50	9
75-00-3	Chloroethane	υ	50	10	5	50	3
75-69-4	Trichlorofluoromethane	υ	50	10	5	50	2
75-35-4	1,1-Dichloroethene	σ	50	10	<u>.</u> 5	50	3
75-15-0	Carbon Disulfide	υ	5 0	10	5	50	2
74-88-4	Iodomethane	ប	100	10	10	100	2
107-02-8	Acrolein	U	500	10	50	500	29
75-09-2	Methylene Chloride	JB	11	10	5	50	3
67-64-1	Acetone	ប	100	10	10	100	28
78-83-1	Isobutyl Alcohol	ប	1000	10	100	1000	780
156-60-5	trans-1,2-Dichloroethene		890	10	5	50	. 18 7 (L.) (E.) (E.)
107-05-1	Allyl Chloride	U	100	10	10	100	14
75-05-8	Acetonitrile	U	500	10	50	500	60
126-99-8	Chloroprene	ប	100	10	10	100	16
126-98-7	Methacrylonitrile	ប	500	10	5 0	500	110
107-12-0	Propionitrile	U	500	10	50	500	160
75-34-3	1,1-Dichloroethane	U	50	10	5	50	1
107-13-1	Acrylonitrile	U	100	10	10	100	8
108-05-4	Vinyl Acetate	U	50	10	5	50	3
156-59-2	cis-1,2-Dichloroethene		340	10	5	50	5
540-59-0	1,2-Dichloroethylene (total)		1200	10	5	50	12
80-62-6	Methyl Methacrylate	υ	100	10	10	100	14
67-66-3	Chloroform	ប	50	10	5	50	2 .
56-23-5	Carbon Tetrachloride	ប	50	10	5	50	3
71-55-6	1,1,1-Trichloroethane	σ	50	10	5	50	7
78-93-3	2-Butanone	U	100	10	10	100	19
71-43-2	Benzene	σ	50	10	5	50	1
97-63-2	Ethyl Methacrylate	U	100	10	10	100	9
107-06-2	1,2-Dichloroethane	υ	50	10	5	50	3
79-01-6	Trichloroethene	U	50	10	5	50	6
74-95-3	Dibromomethane	υ	50	10	5	50	4
78-87-5	1,2-Dichloropropane	U	50	10	5	50	2
75-27-4	Bromodichloromethane	υ	50	10	5	50	2
10061-01-5	cis-1,3-dichloropropene	U	50	10	5	50	4
123-91-1	1,4-Dioxane	U	1000	10	100	1000	430
110-75-8	2-Chloroethylvinylether	U	50	10	5	50	5
108-88-3	Toluene	U	50	10	5	50	2
108-10-1	4-methyl-2-pentanone	υ	100	10	10	100	18
127-18-4	Tetrachloroethene	U	50	10	5	50	4
10061-02-6	trans-1,3-Dichloropropene	U	50	10	5	50	4

Page 01 of 02 S5842.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03
Received Date: 02/04/03
Extraction Date: 02/10/03
Analysis Date: 02/10/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-13

Client ID: S9MW-22-0103-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
79-00-5	1,1,2-Trichloroethane	σ	50	10	5	50	3
124-48-1	Dibromochloromethane	υ	50	10	5	50	3
106-93-4	1,2-Dibromoethane	ซ	50	10	5	50	2
591-78-6	2-Hexanone	σ	100	10	10	100	16
108-90-7	Chlorobenzene	σ	50	10	5	50	2
100-41-4	Ethylbenzene	σ	50	10	5	50	1
630-20-6	1,1,1,2-Tetrachloroethane	ָ ט	50	10	5	50	2
1330-20-7	Xylenes (total)	ซ	50	10	5	50	2
	m+p-Xylenes	σ	50	10	5	50	2
95~47-6	o-Xylene	ប	50	10	5	50	2
100-42-5	Styrene	υ	50	10	5	50	3
75-25-2	Bromoform	σ	50	10	5	50	4
110-57-6	trans-1,4-Dichloro-2-Butene	σ	100	10	10	100	5
79-34-5	1,1,2,2-Tetrachloroethane	U	50	10	5	: 50	4
96-18-4	1,2,3-Trichloropropane	σ	50	10	5	5.0 50	19
76-01-1	Pentachloroethane	. σ	100	10	10	100	16
96-12-8	1,2-Dibromo-3-Chloropropane	σ	50	10	5	50	6
1868-53-7	Dibromofluoromethane		87%				
17060-07-0	1,2-Dichloroethane-D4		104%				
2037-26-5	Toluene-D8		93%				
460-00-4	P-Bromofluorobenzene		100%				

Page 02 of 02 S5842.D

Data File: \\Target_server\GG\chem\gcms-s.i\s021003.b\S5842.D Report Date: 05-Mar-2003 10:35 Page 5

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-13

Operator : JEY

Sample Location:

Sample Matrix: WATER
Analysis Type: VOA
Inj Date: 10-FEB-2003 18:26

Number TICs found: 0

Client SDG: CTO233-4

Client Smp ID: S9MW-22-0103-DL

Sample Date: 02-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

		T .		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	= =====================================	======	==========	====
			·	1

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03
Received Date: 02/04/03
Extraction Date: 02/07/03
Analysis Date: 02/07/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-6

Client ID: S9MW-24-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL	
75-71~8	Dichlorodifluoromethane	υ	5	1.0	5	5	0.2	
74-87~3	Chloromethane	υ	5	1.0	5	5	0.3	
75-01-4	Vinyl chloride	บ	2	1.0	2	2	0.1	
74-83-9	Bromomethane	ប	5	1.0	5	5	0.9	
75-00-3	Chloroethane	U	5	1.0	5	5	0.3	
75-69-4	Trichlorofluoromethane	υ	5	1.0	5	5	0.2	
75-35-4	1,1-Dichloroethene	U	5	1.0	5	5	0.3	
75-15-0	Carbon Disulfide	J	0.6	1.0	5	5	0.2	
74-88-4	Iodomethane	σ	10	1.0	10	10	0.2	
107-02-8	Acrolein	σ	50	1.0	50	50	3	
75-09-2	Methylene Chloride	U	5	1.0	5	5	0.3	
67-64-1	Acetone	J	4	1.0	10	10	3	
78-83-1	Isobutyl Alcohol	U	100	1.0	100	100	78	
156-60-5	trans-1,2-Dichloroethene	E	. 500	1.0	5	. 5 - 1	J	
107-05-1	Allyl Chloride	υ	10	1.0	10	10	: : : 1	3
75-05-8	Acetonitrile	U	50	1.0	50	50	6	
126-99-8	Chloroprene	υ	10	1.0	10	10	2	
126-98-7	Methacrylonitrile	U	50	1.0	50	50	11	
107-12-0	Propionitrile	Ū	50	1.0	50	50	16	
75~34~3	1,1-Dichloroethane	บ	5	1.0	5	5	0.1	
107-13-1	Acrylonitrile	บ	10	1.0	10	10	0.8	
108-05-4	Vinyl Acetate	ប	5	1.0	5	5	0.3	
156-59-2	cis-1,2-Dichloroethene		150	1.0	5	5	0.5	
540-59-0	1,2-Dichloroethylene (total)	E	650	1.0	5	5	1	
80-62-6	Methyl Methacrylate	ប	10	1.0	10	10	1	
67-66-3	Chloroform	υ	5	1.0	5	5	0.2	
56-23-5	Carbon Tetrachloride	U	5	1.0	5	5	0.3	
71-55 - 6	1,1,1-Trichloroethane	υ	5	1.0	5	5	0.7	
78-93-3	2-Butanone	υ	10	1.0	10	10	2	
71-43-2	Benzene	J	0.5	1.0	5	5	0.1	
97-63-2	Ethyl Methacrylate	υ	10	1.0	10	10	0.9	
107-06-2	1,2-Dichloroethane	υ	5	1.0	5	5	0.3	
79-01-6	Trichloroethene	U	5	1.0	5	5	0.6	
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4	
78-87-5	1,2-Dichloropropane	υ	5	1.0	5	5	0.2	
75-27-4	Bromodichloromethane	ប	5	1.0	5	5	0.2	
10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4	
123-91-1	1,4-Dioxane	U	100	1.0	100	100	43	
110-75-8	2-Chloroethylvinylether	U	5	1.0	5	5	0.5	
108-88-3	Toluene	J	0.3	1.0	5	5	0.2	
108-10-1	4-methyl-2-pentanone	U	10	1.0	10	10	2	
127-18-4	Tetrachloroethene	υ	5	1.0	5	5	0.4	
10061-02-6	trans-1,3-Dichloropropene	บ	5	1.0	5	5	0.4	
10001 02 0	orang 1/2 promise personal	-						

Page 01 of 02 S5826.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03
Received Date: 02/04/03
Extraction Date: 02/07/03
Analysis Date: 02/07/03
Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-6 Client ID: S9MW-24-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL	
79-00-5	1,1,2-Trichloroethane	υ	5	1.0	5	5	0.3	
124-48-1	Dibromochloromethane	U	5	1.0	5	5	0.3	
106-93-4	1,2-Dibromoethane	ប	5	1.0	5	5	0.2	
591-78-6	2-Hexanone	σ	10	1.0	10	10	2	
108-90-7	Chlorobenzene	υ	5	1.0	5	5	0.2	
100-41-4	Ethylbenzene	U	5	1.0	5	5	0.1	
630-20-6	1,1,1,2-Tetrachloroethane	U	5	1.0	5	5	0.2	
1330-20-7	Xylenes (total)	J	0.2	1.0	5	5	0.2	
	m+p-Xylenes	J	0.2	1.0	5	5	0.2	
95-47-6	o-Xylene	U	5	1.0	5	5	0.2	
100-42-5	Styrene	υ	5	1.0	5	5	0.3	
75-25-2	Bromoform	U	5	1.0	5	5	0.4	
110-57-6	trans-1,4-Dichloro-2-Butene	U	10	1.0	10	10	0.5	
79-34-5	1,1,2,2-Tetrachloroethane	υ.	5	1.0	/5 -	5		Boundary School (School
96-18-4	1,2,3-Trichloropropane	υ	5	1.0	5 -	5	0.9	to the comment
76-01-1	Pentachloroethane	σ	10	1.0	10	10	2	1.
96-12-8	1,2-Dibromo-3-Chloropropane	υ	5	1.0	5	5	0.6	
1868-53-7	Dibromofluoromethane		87%					
17060-07-0	1,2-Dichloroethane-D4		104%					
2037-26-5	Toluene-D8		91%					
460-00-4	P-Bromofluorobenzene		95%					

Page 02 of 02 S5826.D

Data File: \\Target_server\GG\chem\gcms-s.i\s020703.b\S5826.D Report Date: 05-Mar-2003 09:27 Page 6

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc Lab Smp Id: WT0246-6 Operator: JSS

Sample Location: Sample Matrix: WATER Analysis Type: VOA Inj Date: 07-FEB-2003 19:05

Client SDG: CTO233-4

Client Smp ID: S9MW-24-0103 Sample Date: 02-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================				=====

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03

Received Date: 02/04/03
Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-6

Client ID: S9MW-24-0103-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
75-71-8	Dichlorodifluoromethane	U	25	5.0	5	25	1
74-87-3	Chloromethane	ซ	25	5.0	5	25	1
75-01-4	Vinyl chloride	ប	10	5.0	2	10	0.5
74-83-9	Bromomethane	σ	25	5.0	5	25	5
75-00-3	Chloroethane	σ	25	5.0	5	25	1
75-69-4	Trichlorofluoromethane	υ	25	5.0	5	25	1
75-35-4	1,1-Dichloroethene	υ	25	5.0	5	25	1
75-15-0	Carbon Disulfide	σ	25	5.0	5	25	0.8
74-88-4	Iodomethane	U	50	5.0	10	50	1
107-02-8	Acrolein	υ	250	5.0	50	250	15
75-09-2	Methylene Chloride	JB	. 6	5.0	5	25	2
67-64-1	Acetone	σ	50	5.0	10	50	14
78-83-1	Isobutyl Alcohol	υ	500	5.0	100	500	390
156-60-5	trans-1,2-Dichloroethene		. 330	5.0	5	25	-3 ·
107-05-1	Allyl Chloride	υ	50	5.0	10	50	7
75-05-8	Acetonitrile	σ	250	5.0	50	250	30
126-99-8	Chloroprene	U	50	5.0	10	50	8
126-98-7	Methacrylonitrile	σ	250	5.0	50	250	53
107-12-0	Propionitrile	ប	250	5.0	50	250	79
75-34-3	1,1-Dichloroethane	υ	25	5.0	5	25	0.6
107-13-1	Acrylonitrile	υ	50	5.0	10	50	4
108-05-4	Vinyl Acetate	σ	25	5.0	5	25	2
156-59-2	cis-1,2-Dichloroethene		110	5.0	5	25	2
540-59-0	1,2-Dichloroethylene (total)		440	5.0	5	25	6
80-62-6	Methyl Methacrylate	ប	50	5.0	10	50	7
67-66-3	Chloroform	U	25	5.0	5	25	0.9
56-23-5	Carbon Tetrachloride	ប	25	5.0	5	25	2
71-55-6	1,1,1-Trichloroethane	υ,	25	5.0	5	25	3
78-93-3	2-Butanone	บ	50	5.0	10	50	9
71-43-2	Benzene	ប	25	5.0	5	25	0.6
97-63-2	Ethyl Methacrylate	υ	50	5.0	10	50	4
107-06-2	1,2-Dichloroethane	υ	25	5.0	5	25	1
79-01-6	Trichloroethene	υ	25	5.0	5	25	3
74-95-3	Dibromomethane	U	25	5.0	5	25	2
78-87-5	1,2-Dichloropropane	υ	25	5.0	5	25	1
75-27-4	Bromodichloromethane	υ	25	5.0	5	25	1
10061-01-5	cis-1,3-dichloropropene	σ	25	5.0	5	25	2
123-91-1	1,4-Dioxane	U	500	5.0	100	500	220
110-75-8	2-Chloroethylvinylether	υ	25	5.0	5	25	3
108-88-3	Toluene	υ	25	5.0	5	25	0.9
108-10-1	4-methyl-2-pentanone	υ	50	5.0	10	50	9
127-18-4	Tetrachloroethene	ប	25	5.0	5	25	2
10061-02-6	trans-1,3-Dichloropropene	υ	25	5.0	5	25	2

Page 01 of 02 \$5840.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03

Received Date: 02/04/03 Extraction Date: 02/10/03

Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-6

Client ID: S9MW-24-0103-DL

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
79-00-5	1,1,2-Trichloroethane	ប	25	5.0	5	25	2
124-48-1	Dibromochloromethane	U	25	5.0	5	25	1
106-93-4	1,2-Dibromoethane	υ	25	5.0	5	25	1
591-78-6	2-Hexanone	ט	50	5.0	10	50	8
108-90-7	Chlorobenzene	σ	25	5.0	5	25	1
100-41-4	Ethylbenzene	σ	25	5.0	5	25	0.6
630-20-6	1,1,1,2-Tetrachloroethane	υ	25	5.0	5	25	1.0
1330-20-7	Xylenes (total)	σ	25	5.0	5	25	1
	m+p-Xylenes	σ	25	5.0	5	25	0.9
95-47-6	o-Xylene	ប	25	5.0	5	25	0.8
100-42-5	Styrene	σ	25	5.0	5	25	1
75-25-2	Bromoform	υ	25	5.0	. 5	25	2
110-57-6	trans-1,4-Dichloro-2-Butene	υ	50	5.0	10	50	2
79-34-5	1,1,2,2-Tetrachloroethane	σ	- 25	5.0	√5	25	2
96-18-4	1,2,3-Trichloropropane	σ	25	5.0	5	25	. 5
76-01-1	Pentachloroethane	ប	. 50	5.0	10	50	8
96-12-8	1,2-Dibromo-3-Chloropropane	ប	25	5.0	5	25	3
1868-53-7	Dibromofluoromethane		89%				
17060-07-0	1,2-Dichloroethane-D4		107%				
2037-26-5	Toluene-D8		91%				
460-00-4	P-Bromofluorobenzene		96%				

Page 02 of 02 S5840.D

Data File: \\Target server\GG\chem\gcms-s.i\s021003.b\S5840.D Page 5

Report Date: 05-Mar-2003 10:34

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-6

Operator : JEY Sample Location:

Sample Matrix: WATER Analysis Type: VOA

Inj Date: 10-FEB-2003 17:19

Number TICs found: 0

Client SDG: CTO233-4

Client Smp ID: S9MW-24-0103-DL

Sample Date: 02-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	=======	=========	=====

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03 Received Date: 02/04/03

Extraction Date: 02/07/03 Analysis Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-7 Client ID: S9MW-25-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

75-71-8 Dichlorodifluoromethane U 5 1.0 5 5 0.2 74-87-3 Chloromethane U 5 1.0 5 5 0.3 75-01-4 Vinyl chloride U 2 1.0 2 2 0.1 75-00-3 Chloroethane U 5 1.0 5 5 0.3 75-69-4 Trichlorofluoromethane U 5 1.0 5 5 0.3 75-35-4 1,1-Dichloroethene U 5 1.0 5 5 0.2 75-89-4 1,1-Dichloroethene U 10 1.0 5 5 0.2 75-35-4 1,1-Dichloroethene U 10 1.0 10 0.2 74-88-4 1.0domethane U 10 1.0 10 0.2 107-02-8 Accolein U 5 1.0 5 5 0.3 75-09-2 Methylene Chloride U 10 <
75-01-4 Vinyl chloride U 2 1.0 2 2 0.1 74-83-9 Bromomethane U 5 1.0 5 5 0.9 75-00-3 Chloroethane U 5 1.0 5 5 0.3 75-69-4 Trichlorofluoromethane U 5 1.0 5 5 0.2 75-35-4 1,1-Dichloroethene U 5 1.0 5 5 0.3 75-15-0 Carbon Disulfide J 0.3 1.0 5 5 0.2 74-88-4 Iodomethane U 10 1.0 10 10 0.2 107-02-8 Acrolein U 5 1.0 5 5 0.2 75-09-2 Methylene Chloride U 1 1.0 10 10 3 78-83-1 Isobutyl Alcohol U 10 1.0 10 3 78-60-5 trans-1,2-Dichloroethene J 0.8
74-83-9 Bromomethane U 5 1.0 5 5 0.9 75-00-3 Chloroethane U 5 1.0 5 5 0.3 75-00-4 Trichlorofluoromethane U 5 1.0 5 5 0.2 75-35-4 1,1-Dichloroethene U 5 1.0 5 5 0.2 74-88-4 Iodomethane U 10 1.0 10 10 0.2 107-02-8 Acrolein U 50 1.0 50 50 3 75-09-2 Methylene Chloride U 10 1.0 10 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 10 3 75-05-2 trans-1,2-Dichloroethene J 0.8 1.0 5 5 0.3 75-05-8 Acetonitrile U 50 1.0 5 5 0.7 1 126-99-8 Chloroprene U
75-00-3 Chloroethane U 5 1.0 5 5 0.3 75-69-4 Trichlorofluoromethane U 5 1.0 5 5 0.2 75-35-4 1,1-Dichloroethene U 5 1.0 5 5 0.3 75-15-0 Carbon Disulfide J 0.3 1.0 5 5 0.2 4-88-4 Iodomethane U 10 1.0 10 10 0.2 107-02-8 Acrolein U 5 1.0 5 5 0.3 75-09-2 Methylene Chloride U 1.0 1.0 5 5 0.3 67-64-1 Acetone U 1.0 1.0 10 3 3 78-83-1 Isobutyl Alcohol U 100 1.0 10 78 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 0.7 78 156-69-2 107-07-01 1.0 1.0
75-69-4 Trichlorofluoromethane U 5 1.0 5 5 0.2 75-35-4 1,1-Dichloroethene U 5 1.0 5 5 0.3 75-15-0 Carbon Disulfide J 0.3 1.0 5 5 0.2 74-88-4 Iodomethane U 10 10 10 10 0.2 107-02-8 Acrolein U 50 1.0 50 50 3 75-09-2 Methylene Chloride U 5 1.0 5 5 0.3 67-64-1 Acetone U 10 10 10 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 100 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 100 78 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 0.7 107-05-1 Allyl Chloride U 10 1.0 10 10 78 156-99-8 Chloroprene U 10 10 1.0 10 10 10 10 10 10 10 10 10 10 10 10 10
75-35-4 1,1-Dichloroethene U 5 1.0 5 5 0.3 75-15-0 Carbon Disulfide J 0.3 1.0 5 5 0.2 74-88-4 Iodomethane U 10 1.0 10 10 0.2 107-02-8 Acrolein U 50 1.0 50 50 3 75-09-2 Methylene Chloride U 5 1.0 5 5 0.3 67-64-1 Acetone U 10 1.0 10 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 100 78 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 0.0 78 107-05-1 Allyl Chloride U 10 1.0 10 10 1 10 1.0 10 1 10 10 10 1 2 126-99-8 Chloroprene U 10 1.0 50 50 5 11 107-12-0 Propionitrile U 50<
75-15-0 Carbon Disulfide J 0.3 1.0 5 5 0.2 74-88-4 Iodomethane U 10 1.0 10 10 0.2 107-02-8 Acrolein U 50 1.0 50 50 3 75-09-2 Methylene Chloride U 5 1.0 5 5 0.3 67-64-1 Acetone U 10 1.0 10 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 100 10 3 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 40.7 107-05-1 Allyl Chloride U 10 1.0 10 1 1 1 10.7 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
74-88-4 Iodomethane U 10 1.0 10 0.2 107-02-8 Acrolein U 50 1.0 50 50 3 75-09-2 Methylene Chloride U 5 1.0 5 5 0.3 67-64-1 Acetone U 10 1.0 10 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 100 100 78 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 0.7 100 107-05-1 Allyl Chloride U 10 1.0 10 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 1 10 1 <t< td=""></t<>
107-02-8 Acrolein U 50 1.0 50 50 3 75-09-2 Methylene Chloride U 5 1.0 5 5 0.3 67-64-1 Acetone U 10 1.0 10 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 100 100 78 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 0.7 0.7 107-05-1 Allyl Chloride U 10 1.0 10 10 1
75-09-2 Methylene Chloride U 5 1.0 5 5 0.3 67-64-1 Acetone U 10 1.0 10 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 100 78 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 0.7 4 107-05-1 Allyl Chloride U 10 1.0 10 10 1 1 4 4 75-05-8 Acetonitrile U 50 1.0 50 50 6 6 4 126-99-8 Chloroprene U 10 1.0 10 1 2 126-98-7 Methacrylonitrile U 50 1.0 50 50 11 107-12-0 Propionitrile U 5 1.0 5 5 0.1 107-13-1 Acrylonitrile U 10 1.0 5 5 0.3
67-64-1 Acetome U 10 1.0 1.0 10 3 78-83-1 Isobutyl Alcohol U 100 1.0 100 100 78 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 5 5.0.7.
78-83-1 Isobutyl Alcohol U 100 1.0 100 100 78 156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 20.7 20.8 1.0 5 5 20.7 20.8 20.8 1.0 5 5 20.7 20.8
156-60-5 trans-1,2-Dichloroethene J 0.8 1.0 5 5 5 0.7
107-05-1 Allyl Chloride U 10 1.0 10 1<
75-05-8 Acetonitrile U 50 1.0 50 50 6 1.0 126-99-8 Chloroprene U 10 1.0 10 10 2 126-99-8 Methacrylonitrile U 50 1.0 50 50 11 107-12-0 Propionitrile U 50 1.0 50 50 16 75-34-3 1,1-Dichloroethane U 5 1.0 5 5 0.1 107-13-1 Acrylonitrile U 10 10 10 10 10 0.8 108-05-4 Vinyl Acetate U 55 1.0 5 5 0.3 156-59-2 cis-1,2-Dichloroethene U 5 1.0 5 5 0.5 5 0.5 540-59-0 1,2-Dichloroethylene (total) U 5 1.0 5 5 5 1 80-62-6 Methyl Methacrylate U 10 1.0 10 10 10 10 10 10 10 10 10 10 10 10 10
126-99-8 Chloroprene U 10 1.0 10 2 126-98-7 Methacrylonitrile U 50 1.0 50 50 11 107-12-0 Propionitrile U 50 1.0 50 50 16 75-34-3 1,1-Dichloroethane U 5 1.0 5 5 0.1 107-13-1 Acrylonitrile U 10 1.0 10 10 0.8 108-05-4 Vinyl Acetate U 5 1.0 5 5 0.3 156-59-2 cis-1,2-Dichloroethene U 5 1.0 5 5 0.5 540-59-0 1,2-Dichloroethylene (total) U 5 1.0 5 5 1 80-62-6 Methyl Methacrylate U 10 1.0 10 1 1 67-66-3 Chloroform U 5 1.0 5 5 0.2
126-98-7 Methacrylonitrile U 50 1.0 50 50 11 107-12-0 Propionitrile U 50 1.0 50 50 16 75-34-3 1,1-Dichloroethane U 5 1.0 5 5 0.1 107-13-1 Acrylonitrile U 10 1.0 10 10 0.8 108-05-4 Vinyl Acetate U 5 1.0 5 5 0.3 156-59-2 cis-1,2-Dichloroethene U 5 1.0 5 5 0.5 540-59-0 1,2-Dichloroethylene (total) U 5 1.0 5 5 1 80-62-6 Methyl Methacrylate U 10 1.0 10 10 1 67-66-3 Chloroform U 5 1.0 5 5 0.2
107-12-0 Propionitrile U 50 1.0 50 50 16 75-34-3 1,1-Dichloroethane U 5 1.0 5 5 0.1 107-13-1 Acrylonitrile U 10 1.0 10 10 0.8 108-05-4 Vinyl Acetate U 5 1.0 5 5 0.3 156-59-2 cis-1,2-Dichloroethene U 5 1.0 5 5 0.5 540-59-0 1,2-Dichloroethylene (total) U 5 1.0 5 5 1 80-62-6 Methyl Methacrylate U 10 1.0 10 10 1 67-66-3 Chloroform U 5 1.0 5 5 0.2
75-34-3
107-13-1 Acrylonitrile U 10 1.0 1.0 10 0.8 108-05-4 Vinyl Acetate U 5 1.0 5 5 0.3 156-59-2 cis-1,2-Dichloroethene U 5 1.0 5 5 0.5 540-59-0 1,2-Dichloroethylene (total) U 5 1.0 5 5 1 80-62-6 Methyl Methacrylate U 10 1.0 10 10 10 1 67-66-3 Chloroform U 5 1.0 5 5 0.2
108-05-4 Vinyl Acetate U 5 1.0 5 5 0.3 156-59-2 cis-1,2-Dichloroethene U 5 1.0 5 5 0.5 540-59-0 1,2-Dichloroethylene (total) U 5 1.0 5 5 1 80-62-6 Methyl Methacrylate U 10 1.0 10 1 1 67-66-3 Chloroform U 5 1.0 5 5 0.2
156-59-2 cis-1,2-Dichloroethene U 5 1.0 5 5 0.5 540-59-0 1,2-Dichloroethylene (total) U 5 1.0 5 5 1 80-62-6 Methyl Methacrylate U 10 1.0 10 10 1 67-66-3 Chloroform U 5 1.0 5 5 0.2
540-59-0 1,2-Dichloroethylene (total) U 5 1.0 5 1 80-62-6 Methyl Methacrylate U 10 1.0 10 1 67-66-3 Chloroform U 5 1.0 5 5 0.2
80-62-6 Methyl Methacrylate U 10 1.0 10 1 67-66-3 Chloroform U 5 1.0 5 5 0.2
67-66-3 Chloroform U 5 1.0 5 5 0.2
56-23-5 Carbon Tetrachloride II 5 1 0 5 5 0 3
50 25 5 Carbon retractione 0 5 1.0 5 5 0.5
71-55-6 1,1,1-Trichloroethane U 5 1.0 5 5 0.7
78-93-3 2-Butanone U 10 1.0 10 2
71-43-2 Benzene U 5 1.0 5 5 0.1
97-63-2 Ethyl Methacrylate U 10 1.0 10 0.9
107-06-2 1,2-Dichloroethane U 5 1.0 5 5 0.3
79-01-6 Trichloroethene U 5 1.0 5 5 0.6
74-95-3 Dibromomethane U 5 1.0 5 5 0.4
78-87-5 1,2-Dichloropropane U 5 1.0 5 5 0.2
75-27-4 Bromodichloromethane U 5 1.0 5 5 0.2
10061-01-5 cis-1,3-dichloropropene U 5 1.0 5 5 0.4
123-91-1 1,4-Dioxane U 100 1.0 100 43
110-75-8 2-Chloroethylvinylether U 5 1.0 5 5 0.5
108-88-3 Toluene
108-10-1 4-methyl-2-pentanone U 10 1.0 10 2
127-18-4 Tetrachloroethene U 5 1.0 5 5 0.4
10061-02-6 trans-1,3-Dichloropropene U 5 1.0 5 5 0.4

Page 01 of 02 S5827.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/02/03

Received Date: 02/04/03
Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-7

Client ID: S9MW-25-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
79-00-5	1,1,2-Trichloroethane	U	5	1.0	5	5	0.3
124-48-1	Dibromochloromethane	Ū	5	1.0	5	5	0.3
106-93-4	1,2-Dibromoethane	U	5	1.0	5	5	0.2
591-78-6	2-Hexanone	U	10	1.0	10	10	2
108-90-7	Chlorobenzene	U	5	1.0	5	5	0.2
100-41-4	Ethylbenzene	U	5	1.0	5	5	0.1
630-20-6	1,1,1,2-Tetrachloroethane	U	5	1.0	5	5	0.2
1330-20-7	Xylenes (total)	σ	5	1.0	5	5	0.2
	m+p-Xylenes	ប	5	1.0	5	5	0.2
95-47-6	o-Xylene	ប	5	1.0	5	5	0.2
100-42-5	Styrene	U	5	1.0	5	5	0.3
75-25-2	Bromoform	ប	5	1.0	5	5	0.4
110-57-6	trans-1,4-Dichloro-2-Butene	ប	10	1.0	10	10	0.5
79-34-5	1,1,2,2-Tetrachloroethane	· ប	5	1.0	: 5	⇒ 5	0.4
96-18-4	1,2,3-Trichloropropane	ប	5	1.0	·5	- 5	0.9
76-01-1	Pentachloroethane	ប	10	1.0	10	10	2
96-12-8	1,2-Dibromo-3-Chloropropane	ט	5	1.0	5	5	0.6
1868~53~7	Dibromofluoromethane		86%				
17060-07-0	1,2-Dichloroethane-D4		95%				
2037-26-5	Toluene-D8		92%				
460-00-4	P-Bromofluorobenzene		90%				

Page 02 of 02 \$5827.D

Data File: \\Target_server\GG\chem\gcms-s.i\s020703.b\S5827.D Page 5

Report Date: 26-Feb-2003 11:53

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-7

Operator : JSS Sample Location:

Sample Matrix: WATER

Analysis Type: VOA

Number TICs found: 0

Inj Date: 07-FEB-2003 19:37

Client SDG: CTO233-4

Client Smp ID: S9MW-25-0103 Sample Date: 02-FEB-2003

Sample Point:

Date Received: 04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0
******		=======	==========	====

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03

Received Date: 02/04/03
Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-1 Client ID: S9MW-5-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

	CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL		
	75-71-8	Dichlorodifluoromethane	U	5	1.0	5	5	0.2		
	74-87-3	Chloromethane	υ	5	1.0	5	5	0.3		
	75-01-4	Vinyl chloride	U	2	1.0	2	2	0.1		
	74-83-9	Bromomethane	U	5	1.0	5	5	0.9		
	75-00-3	Chloroethane	σ	5	1.0	5	5	0.3		
	75-69-4	Trichlorofluoromethane	υ	5	1.0	5	5	0.2		
	75-35-4	1,1-Dichloroethene	U	5	1.0	5	5	0.3		
	75-15-0	Carbon Disulfide	J	0.2	1.0	5	5	0.2		
	74-88-4	Iodomethane	σ	10	1.0	10	10	0.2		
	107-02-8	Acrolein	υ	50	1.0	50	50	3		
	75-09-2	Methylene Chloride	Ū	5	1.0	5	5	0.3		
	67-64-1	Acetone	ប	10	1.0	10	10	3		
	78-83-1	Isobutyl Alcohol	Ū	100	1.0	100	100	78		
	156-60-5	trans-1,2-Dichloroethene	U	5	1.0	2 5 i.e.	- 5	007	L 62 01 31	3 2
1 1 1 1 1 1 1	107-05-1	Allyl Chloride	Ū	10	1.0	10	a 10	20. 1 1	• • • • • • • • • • • • • • • • • • • •	. :
	75-05-8	Acetonitrile	σ	50	1.0	50	50	6		
	126-99-8	Chloroprene	U	10	1.0	10	10	2		
	126-98-7	Methacrylonitrile	υ	50	1.0	50	50	11		
	107-12-0	Propionitrile	υ	50	1.0	50	50	16		
	75-34-3	1,1-Dichloroethane	U	5	1.0	5	5	0.1		
	107-13-1	Acrylonitrile	υ	10	1.0	10	10	0.8		
	108-05-4	Vinyl Acetate	υ.	5	1.0	5	5	0.3		
	156-59-2	cis-1,2-Dichloroethene	υ	5	1.0	5	5	0.5		
	540-59-0	1,2-Dichloroethylene (total)	υ	5	1.0	5	5	1		
	80-62-6	Methyl Methacrylate	U	10	1.0	10	10	1		
	67-66-3	Chloroform	υ	5	1.0	5	5	0.2		
	,56-23-5	Carbon Tetrachloride	Ŭ	5	1.0	5	5	0.3		
	71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	5	0.7		
	78-93-3	2-Butanone	U	10	1.0	10	10	2		
	71-43-2	Benzene	J	3	1.0	5	5	0.1		
	97-63-2	Ethyl Methacrylate	U	10	1.0	10	10	0.9		
	107-06-2	1,2-Dichloroethane	U	5	1.0	5	5	0.3		
	79-01-6	Trichloroethene	U	5	1.0	5	5	0.6		
	74-95-3	Dibromomethane	U	· 5	1.0	5	5	0.4		
	78-87-5	1,2-Dichloropropane	U	5	1.0	5	5	0.2		
	75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2		
	10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4		
	123-91-1	1,4-Dioxane	U	100	1.0	100	100	43		
	110-75-8	2-Chloroethylvinylether	U	5	1.0	5	5	0.5		
	108-88-3	Toluene	U	5	1.0	5	5	0.2		
	108-10-1	4-methyl-2-pentanone	U	10	1.0	10	10	2		
	127-18-4	Tetrachloroethene	บ	5	1.0	5	5	0.4		
	10061-02-6	trans-1,3-Dichloropropene	υ	5	1.0	5	5	0.4		

Page 01 of 02 \$5821.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03

Received Date: 02/04/03 Extraction Date: 02/07/03 Analysis Date: 02/07/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-1 Client ID: S9MW-5-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
79-00-5	1,1,2-Trichloroethane	σ	5	1.0	5	5	0.3
124-48-1	Dibromochloromethane	U	5	1.0	5	5	0.3
106-93-4	1,2-Dibromoethane	U	5	1.0	5	5	0.2
591-78-6	2-Hexanone	U	10	1.0	10	10	2
108-90-7	Chlorobenzene	ប	5	1.0	5	5	0.2
100-41-4	Ethylbenzene	J	2	1.0	5	5	0.1
630-20-6	1,1,1,2-Tetrachloroethane	U	5	1.0	5	5	0.2
1330-20-7	Xylenes (total)	υ	5	1.0	5	5	0.2
	m+p-Xylenes	U	5	1.0	5	5	0.2
95-47-6	o-Xylene	U	5	1.0	5	5	0.2
100-42-5	Styrene	U	5	1.0	5	5	0.3
75-25-2	Bromoform	ប	5	1.0	5	5	0.4
110-57-6	trans-1,4-Dichloro-2-Butene	U	10	1.0	10	10	0.5
79-34-5	1,1,2,2-Tetrachloroethane	U ·	5	1.0	5	5	-0.4
96-18-4	1,2,3-Trichloropropane	υ.	5	1.0	5 -	5	0.9
76-01-1	Pentachloroethane	υ	10	1.0	10	10	2
96-12-8	1,2-Dibromo-3-Chloropropane	υ	5	1.0	5	5	0.6
1868-53-7	Dibromofluoromethane		88%				
17060-07-0	1,2-Dichloroethane-D4		103%				
2037-26-5	Toluene-D8		92%				
460-00-4	P-Bromofluorobenzene		96%				

Page 02 of 02 \$5821.D

Data File: \\Target_server\GG\chem\gcms-s.i\s020703.b\S5821.D Report Date: 28-Feb-2003 07:50 Page 5

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc Lab Smp Id: WT0246-1 Operator: JSS

Sample Location: Sample Matrix: WATER Analysis Type: VOA Inj Date: 07-FEB-2003 16:18

Client SDG: CTO233-4

Client Smp ID: S9MW-5-0103 Sample Date: 01-FEB-2003

Sample Point:

Date Received: 04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======	=========	=====

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/21/03 Received Date: 02/01/03

Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-8 Client ID: TB-013103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
75-71-8	Dichlorodifluoromethane	σ	5	1.0	5	5	0.2
74-87-3	Chloromethane	U	5	1.0	5	5	0.3
75-01-4	Vinyl chloride	U	2	1.0	2	2	0.1
74-83-9	Bromomethane	U	5	1.0	5	5	0.9
75-00-3	Chloroethane	U	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	υ	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	υ	5	1.0	5	5	0.3
75-15-0	Carbon Disulfide	U	5	1.0	5	5	0.2
74-88-4	Iodomethane	σ	10	1.0	10	10	0.2
107-02-8	Acrolein	U	50	1.0	50	50	3
75-09-2	Methylene Chloride	ប	5	1.0	5	5	0.3
67-64-1	Acetone	ប	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	U	100	1.0	100	100	78
156-60-5.	trans-1,2-Dichloroethene	U	s. · 5	110	75	- 5	0.7
107-05-1	Allyl Chloride	υ .	10	1.0	10	10	31 1 1 34
75-05-8	Acetonitrile	υ	50	1.0	50	50	~ 6
126-99-8	Chloroprene	υ	10	1.0	10	10	2
126-98-7	Methacrylonitrile	υ	50	1.0	50	50	11
107-12-0	Propionitrile	υ	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	U	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	υ	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	υ	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	U	5	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	U	5	1.0	5	5	1
80-62-6	Methyl Methacrylate	U	10	1.0	10	10	1
67-66-3	Chloroform	U	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	υ	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	υ	5	1.0	5	5	0.7
78-93-3	2-Butanone	υ	10	1.0	10	10	2
71-43-2	Benzene	U	5	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	U	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	υ	5	1.0	5	5	0.3
79-01-6	Trichloroethene	U	5	1.0	5	5	0.6
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	υ	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	σ	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	υ	5	1.0	5	5	0.5
108-88-3	Toluene	σ	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	υ	10	1.0	10	10	2
127-18-4	Tetrachloroethene	σ	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	Ū	5	1.0	5	5	0.4
· · · · · · ·	• • • • • • • • • • • • • • • • • • •				-	·=	

Page 01 of 02 S5817.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/21/03 Received Date: 02/01/03

Extraction Date: 02/07/03 Analysis Date: 02/07/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-8 Client ID: TB-013103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL	
79-00-5	1,1,2-Trichloroethane	υ	5	1.0	5	5	0.3	
124-48-1	Dibromochloromethane	υ	5	1.0	5	5	0.3	
106-93-4	1,2-Dibromoethane	U	5	1.0	5	5	0.2	
591-78-6	2-Hexanone	U	10	1.0	10	10	2	
108-90-7	Chlorobenzene	ប	5	1.0	5	5	0.2	
100-41-4	Ethylbenzene	U	5	1.0	5	5	0.1	
630-20-6	1,1,1,2-Tetrachloroethane	U	5	1.0	5	5	0.2	
1330-20-7	Xylenes (total)	υ	5	1.0	5	5	0.2	
	m+p-Xylenes	U	5	1.0	5	5	0.2	
95-47-6	o-Xylene	U	5	1.0	5	5	0.2	
100-42-5	Styrene	U	5	1.0	5	5	0.3	
75-25-2	Bromoform	U	5	1.0	5	5	0.4	
110-57-6	trans-1,4-Dichloro-2-Butene	· U	10	1.0	10	10	0.5	
79-34-5	1,1,2,2-Tetrachloroethane	υ	5	1.0	/5	5	0.4	ethan satisfie
96-18-4	1,2,3-Trichloropropane	υ	5	1.0	√ 5 ∞	- 5	0.9	TO ANY STREET
76-01-1	Pentachloroethane	U	10	1.0	10 -	10	2	
96-12-8	1,2-Dibromo-3-Chloropropane	U	5	1.0	5	5	0.6	
1868-53-7	Dibromofluoromethane		888					
17060-07-0	1,2-Dichloroethane-D4		91%					
2037-26-5	Toluene-D8		91%					
460-00-4	P-Bromofluorobenzene		87%					

Page 02 of 02 S5817.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CT0233

PO No:

Sample Date: 01/21/03
Received Date: 02/04/03
Extraction Date: 02/07/03
Analysis Date: 02/07/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-14 Client ID: TB-020303

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
75~71-8	Dichlorodifluoromethane	σ	5	1.0	5	5	0.2
74-87-3	Chloromethane	υ	5	1.0	5	5	0.3
75-01-4	Vinyl chloride	ប	2	1.0	2	2	0.1
74-83-9	Bromomethane	Ü	5	1.0	5	5	0.9
75-00-3	Chloroethane	U	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	U	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	ប	5	1.0	5	5	0.3
75-15-0	Carbon Disulfide	U	5	1.0	5	5	0.2
74-88-4	Iodomethane	υ	10	1.0	10	10	0.2
107-02-8	Acrolein	U	50	1.0	50	50	3
75-09-2	Methylene Chloride	U	5	1.0	5	5	0.3
67-64-1	Acetone	υ	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	σ	100	1.0	100	100	78
. 156-60-5	trans-1,2-Dichloroethene	บ	. 5	1.0	- 5	- 5	7.40.7
107-05-1	Allyl Chloride	U	10	1.0	10	10	olon mair ha
75-05-8	Acetonitrile	υ	50	1.0	50	50	6
126-99-8	Chloroprene	υ	10	1.0	10	10	2
126-98-7	Methacrylonitrile	U	50	1.0	50	50	11
107-12-0	Propionitrile	ប	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	U .	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	υ	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	υ	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	. U	5	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	U	5	1.0	5	5	1
80-62-6	Methyl Methacrylate	U	10	1.0	10	10	1
67-66-3	Chloroform	υ.	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	U	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	5	0.7
78-93-3	2-Butanone	U	10	1.0	10	10	2
71-43-2	Benzene	U	5	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	U	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	υ	5	1.0	5	5	0.3
79-01-6	Trichloroethene	U	5	1.0	5	5	0.6
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	σ	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	υ	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	บ	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	υ	5	1.0	5	5	0.5
108-88-3	Toluene	υ	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	υ	10	1.0	10	10	2
127-18-4	Tetrachloroethene	υ	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	υ	5	1.0	5	5	0.4

Page 01 of 02 S5818.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/21/03
Received Date: 02/04/03
Extraction Date: 02/07/03

Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER
% Solids: NA

Lab ID: WT0246-14 Client ID: TB-020303

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adi.PO	L Adj.MDL
79-00-5	1,1,2-Trichloroethane	บ	5	1.0	5	5	0.3
124-48-1	Dibromochloromethane	ប	5	1.0	5	5	0.3
106-93-4	1,2-Dibromoethane	U	5	1.0	5	5	0.2
591-78-6	2-Hexanone	υ	10	1.0	10	10	2
108-90-7	Chlorobenzene	σ	5	1.0	5	5	0.2
100-41-4	Ethylbenzene	ប	5	1.0	5	5	0.1
630-20-6	1,1,1,2-Tetrachloroethane	ប	5	1.0	5	5	0.2
1330-20-7	Xylenes (total)	ប	5	1.0	5	5	0.2
	m+p-Xylenes	ប	5	1.0	5	5	0.2
95-47-6	o-Xylene	ប	5	1.0	5	5	0.2
100-42-5	Styrene	σ	5	1.0	5	5	0.3
75-25-2	Bromoform	ប	5	1.0	5	5	0.4
110-57-6	trans-1,4-Dichloro-2-Butene	ប	10	1.0	10	10	0.5
79-34-5	1,1,2,2-Tetrachloroethane	ប	5	1.0	-5	:	- 0.4
96-18-4	1,2,3-Trichloropropane	σ	5	1.0	5 -	: :5	0.9
76-01-1	Pentachloroethane	U	10	1.0		10	2
96-12-8	1,2-Dibromo-3-Chloropropane	ŭ	5	1.0	5	5	0.6
1868-53-7	Dibromofluoromethane		90%			_	0.0
17060-07-0	1,2-Dichloroethane-D4		103%				
2037-26-5	Toluene-D8		94%				
460-00-4	P-Bromofluorobenzene		98%				

Page 02 of 02 S5818.D

Data File: \\Target_server\GG\chem\gcms-s.i\s020703.b\S5818.D Report Date: 26-Feb-2003 11:51 Page 5

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-14

Operator : JSS Sample Location:

Sample Matrix: WATER
Analysis Type: VOA
Inj Date: 07-FEB-2003 14:39

Client SDG: CTO233-4 Client Smp ID: TB-020303

Sample Date: 21-JAN-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT ======	EST. CONC.	Q =====

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03 Received Date: 02/01/03 Extraction Date: 02/05/03 Analysis Date: 02/06/03

Report Date: 02/27/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-3

Client ID: FC-MW-05-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1669

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.P	QL Adj.MDL
	m+p-Xylenes		4	1.0	2	2	0.5
156-60-5	trans-1,2-Dichloroethene	U	1	1.0	1	1	0.5
156-59-2	cis-1,2-Dichloroethene	ប	1	1.0	1	1	0.5
95-47-6	o-Xylene		1	1.0	1	1	0.5
74-87-3	Chloromethane	ប	2	1.0	2	2	0.5
75-01-4	Vinyl chloride	ប	2	1.0	2	2	0.5
74-83-9	Bromomethane	υ	2	1.0	2	2	0.5
75-00-3	Chloroethane	ប	2	1.0	2	2	0.5
75-35-4	1,1-Dichloroethene	U	1	1.0	1	- 1	0.5
75-09-2	Methylene Chloride	ט	2	1.0	2	2	0.5
1634-04-4	Methyl tert-butyl ether	Ū	2	1.0	2	2	0.3
75-34-3	1,1-Dichloroethane	ប	1	1.0	1	1	0.5
540-59-0	1,2-Dichloroethylene (total)	σ	2	1.0	2	2	0.5
67-66-3	Chloroform	T	1	1.0	1	1	0.5
56-23-5	Carbon Tetrachloride	σ	1	1.0	1	1	0.5
71-55-6	1,1,1-Trichloroethane	ט	1	1.0	1	1	0.5
71-43-2	Benzene	ប	1	1.0	1	1	0.5
107-06-2	1,2-Dichloroethane	ប	1	1.0	1	1	0.5
79-01-6	Trichloroethene	J	1	1.0	1	1	0.5
78-87-5	1,2-Dichloropropane	σ	1	1.0	1	1	0.5
75-27 - 4	Bromodichloromethane	σ	1	1.0	1	1	0.5
10061-01-5	cis-1,3-dichloropropene	σ	1	1.0	1	1	0.5
110-75-8	2-Chloroethylvinylether	σ	1	1.0	1	1	0.5
108-88-3	Toluene		1	1.0	1	1	0.2
127-18-4	Tetrachloroethene	ប	1	1.0	1	1	0.5
10061-02-6	trans-1,3-Dichloropropene	ប	1	1.0	1	1	0.5
79-00-5	1,1,2-Trichloroethane	ប	1	1.0	1	1	0.5
124-48-1	Dibromochloromethane	ប	1	1.0	1	1	0.5
108-90-7	Chlorobenzene	ប	1	1.0	1	1	0.5
100-41-4	Ethylbenzene		1	1.0	1	1	0.5
1330-20-7	Xylenes (total)		5	1.0	3	3	0.5
75-25-2	Bromoform	ប	1	1.0	1	1	0.5
79-34-5	1,1,2,2-Tetrachloroethane	υ	1	1.0	1	1	0.5
1868-53-7	Dibromofluoromethane		888		_	-	0.5
17060-07-0	1,2-Dichloroethane-D4		71%				
2037-26-5	Toluene-D8		96%				
460-00-4	P-Bromofluorobenzene		84%				

Page 01 of 01 F9131.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/07/03
Analysis Date: 02/07/03
Report Date: 02/26/2003

Matrix: WATER % Solids: NA Lab ID: WT0233-1

Client ID: FC-MW-06-0103

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1670

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.POL	Adj.MDL
	m+p-Xylenes		3	1.0	2	2	0.5
156-60-5	trans-1,2-Dichloroethene	υ	1	1.0	1	1	0.5
156-59-2	cis-1,2-Dichloroethene	U	1	1.0	1	1	0.5
95-47-6	o-Xylene		1	1.0	1	1	0.5
74-87-3	Chloromethane	U ·	2	1.0	2	2	0.5
75-01-4	Vinyl chloride	υ	2	1.0	2	2	0.5
74-83-9	Bromomethane	U	2	1.0	2	2	0.5
75-00-3	Chloroethane	υ	2	1.0	2	2	0.5
75-35-4	1,1-Dichloroethene	U	1	1.0	1	1	0.5
75-09-2	Methylene Chloride	σ	2	1.0	·2	2	0.5
1634-04-4	Methyl tert-butyl ether	U	2	1.0	2	2	0.3
75-34-3	1,1-Dichloroethane	ប	. 1	1.0	1	1	0.5
540-59-0	1,2-Dichloroethylene (total)	σ	2	1.0	2	2	0.5
67-66-3	Chloroform	υ	1	1.0	1	1	0.5
56-23-5	Carbon Tetrachloride	σ	1	1.0	. 1	. 1	0.5 .
71-55-6	1,1,1-Trichloroethane	υ	1.	1.0	1	1	0.5
71-43-2	Benzene	ប	1	1.0	1	1	0.5
107-06-2	1,2-Dichloroethane	σ	1	1.0	1	1	0.5
79-01-6	Trichloroethene	σ	1	1.0	1	1	0.5
78-87-5	1,2-Dichloropropane	σ	1	1.0	1	1	0.5
75-27-4	Bromodichloromethane	U	1	1.0	1	1	0.5
10061-01-5	cis-1,3-dichloropropene	U	1	1.0	1	1	0.5
110-75-8	2-Chloroethylvinylether	U	1	1.0	1	1	0.5
108-88-3	Toluene	Ū	1	1.0	1	1	0.2
127-18-4	Tetrachloroethene	σ	1	1.0	1	1	0.5
10061-02-6	trans-1,3-Dichloropropene	ប	1	1.0	1	1	0.5
79-00-5	1,1,2-Trichloroethane	U	• 1	1.0	1	1	0.5
124-48-1	Dibromochloromethane	ប	1	1.0	1	1	0.5
108-90-7	Chlorobenzene	Ū	· 1	1.0	1	1	0.5
100-41-4	Ethylbenzene		1	1.0	1	1.	0.5
1330-20-7	-Xylenes (total)		5	1.0	3	3	0.5
75-25-2	Bromoform	U	1	1.0	1	1	0.5
79-34-5	1,1,2,2-Tetrachloroethane	U	1	1.0	1	1	0.5
1868-53-7	Dibromofluoromethane		98%				
17060-07-0	1,2-Dichloroethane-D4		888				
2037-26-5	Toluene-D8		99%				
460-00-4	P-Bromofluorobenzene		92%				

Page 01 of 01 F9165.D

. The section is $\mathbf{x}_{i} = \mathbf{x}_{i}$

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/05/03
Analysis Date: 02/06/03

Report Date: 02/28/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-2

Client ID: FC-MW-20R-0103

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1669

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	m+p-Xylenes		19	1.0	2	2	0.5
156-60-5	trans-1,2-Dichloroethene	U	1	1.0	1	1	0.5
156-59 -2	cis-1,2-Dichloroethene	U	1	1.0	1	1	0.5
95-47-6	o-Xylene	U	1	1.0	1	1	0.5
74-87-3	Chloromethane	U	2	1.0	2	2	0.5
75-01-4	Vinyl chloride	${f v}$	2	1.0	2	2 .	0.5
74-83-9	Bromomethane	υ	2	1.0	2	2	0.5
75-00-3	Chloroethane	σ	2	1.0	2	2	0.5
75-35-4	1,1-Dichloroethene	υ	1	1.0	1	1	0.5
75-09-2	Methylene Chloride	υ	2	1.0	2	2	0.5
1634-04-4	Methyl tert-butyl ether	ប	2	1.0	2	2	0.3
75-34-3	1,1-Dichloroethane	υ	1	1.0	1	1	0.5
. 540-59-0	1,2-Dichloroethylene (total)	ซ	2	1.0	2	2	0.5
67-66-3	Chloroform	ប	1	1.0	1	1	0.5
56-23 - 5	Carbon Tetrachloride	ប	1	1.0	1	1	0.5
71-55-6	1,1,1-Trichloroethane	ប	1	1.0	1	1	0.5
71-43-2	Benzene	ប	1	1.0	1	1	0.5
107-06-2	1,2-Dichloroethane	ប	1	1.0	1	1	0.5
79-01-6	Trichloroethene	ប	1	1.0	1	1	0.5
78-87-5	1,2-Dichloropropane	ប	1	1.0	1	1	0.5
75-27-4	Bromodichloromethane	σ	1	1.0	1	1	0.5
10061-01-5	cis-1,3-dichloropropene	υ	1	1.0	1	1	0.5
110-75-8	2-Chloroethylvinylether	υ	1	1.0	1	1	0.5
108-88-3	Toluene		4	1.0	1	1	0.2
127-18-4	Tetrachloroethene	σ	1	1.0	1	1	0.5
10061-02-6	trans-1,3-Dichloropropene	ប	1	1.0	1	1	0.5
79-00-5	1,1,2-Trichloroethane	U	1	1.0	1	1	0.5
124-48-1	Dibromochloromethane	υ,	1	1.0	1	1	0.5
108-90-7	Chlorobenzene	ซ	1	1.0	1	1	0.5
100-41-4	Ethylbenzene		88	1.0	1	1	0.5
1330-20-7	Xylenes (total)		19	1.0	3	3	0.5
75-25-2	Bromoform	υ	1	1.0	1	1	0.5
79-34-5	1,1,2,2-Tetrachloroethane	U	1	1.0	1	1	0.5
1868-53-7	Dibromofluoromethane		86%				
17060-07-0	1,2-Dichloroethane-D4		72%				
2037-26-5	Toluene-D8		97%				
460-00-4	P-Bromofluorobenzene		82%				

Page 01 of 01 F9130.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CT0233

PO No:

Sample Date: 01/31/03 Received Date: 02/01/03 Extraction Date: 02/10/03 Analysis Date: 02/10/03 Report Date: 02/27/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-3

Client ID: FC-MW-05-0103

SDG: CT0233-4 Extracted by: LRS

Extraction Method: EPA 504.1

Analyst: LRS

Analysis Method: EPA 504.1 Lab Prep Batch: WG1604

Units: ug/L

CAS# Compound 106-93-4 1,2-Dibromoethane 877-09-8

Tetrachloro-M-Xylene

Flags

Results DF 0.020 1.0

PQL Adj.PQL Adj.MDL 0.020 0.020 0.019

888

Page 01 of 01 3TB1026.d

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CT0233

PO No:

Sample Date: 01/31/03 Received Date: 02/01/03 Extraction Date: 02/10/03 Analysis Date: 02/10/03 Report Date: 02/27/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-1

Client ID: FC-MW-06-0103

SDG: CTO233-4 Extracted by: LRS

Extraction Method: EPA 504.1

Analyst: LRS

Analysis Method: EPA 504.1 Lab Prep Batch: WG1604

Units: ug/L

CAS#	Compound	Flags	Results	DF	
106-93-4 877-09-8	1,2-Dibromoethane Tetrachloro-M-Xylene	ū	0.020 70%	1.0	PQL Adj.PQL Adj.MDL 0.020 0.020 0.019

Page 01 of 01 3TB1024.d

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/10/03
Analysis Date: 02/10/03
Report Date: 02/27/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-2

Client ID: FC-MW-20R-0103

SDG: CTO233-4 Extracted by: LRS

Extraction Method: EPA 504.1

Analyst: LRS

Analysis Method: EPA 504.1 Lab Prep Batch: WG1604

Units: ug/L

Page 01 of 01 3TB1025.d

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CT0233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/05/03

Analysis Date: 03/04/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-7.
Client ID: 0103-DUP-01

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
109-06-8	2-Picoline	U	10	1.0	10	10	1
110-86-1	Pyridine	υ	50	1.0	50	50	0.8
62-75-9	N-Nitrosodimethylamine	บ	20	1.0	20	20	2
62-53-3	Aniline	U	10	1.0	10	10	0.6
108-95-2	Phenol	U	10	1.0	10	10	0.8
111-44-4	Bis(2-Chloroethyl)ether	σ	10	1.0	10	10	0.9
95-57-8	2-Chlorophenol	U	10	1.0	10	10	1.0
541-73-1	1,3-Dichlorobenzene	U	10	1.0	10	10	0.7
106-46-7	1,4-Dichlorobenzene	, ਹ	10	1.0	10	10	0.6
95-50-1	1,2-Dichlorobenzene	υ	10	1.0	10	10	0.7
100-51-6	Benzyl alcohol	υ	20	1.0	20	20	2
108-60-1	Bis(2-Chloroisopropyl)ether	σ	10	1.0	10	10	3
95-48-7	2-Methylphenol	U .	10	1.0	10	10	0.8
67-72-1	Hexachloroethane	υ	10	1.0	10	10	0.6
621-64-7	N-Nitroso-di-n-propylamine	υ	10	1.0	1.0	10	0.7
106-44-5	3&4-Methylphenol	ט	10	1.0	10	10	2
98-95-3	Nitrobenzene	U	10	1.0	10	10	1.0
78-59-1	Isophorone	υ	10	1.0	10	10	0.8
88-75 - 5	2-Nitrophenol	U	10	1.0	10	10	0.4
105-67-9	2,4-Dimethyphenol	ប	10	1.0	10	10	0.7
111-91-1	Bis(2-Chloroethoxy)methane	U	10	1.0	10	10	1
120-83-2	2,4-Dichlorophenol	U	10	1.0	10	10	1
120-82-1	1,2,4-Trichlorobenzene	U	10	1.0	10	10	0.8
91-20-3	Naphthalene	ប	10	1.0	10	10	0.6
106-47-8	4-Chloroaniline	υ	10	1.0	10	10	0.5
87-68-3	Hexachlorobutadiene	U	10	1.0	10	10	0.3
59-50-7	4-Chloro-3-Methylphenol	U	10	1.0	10	10	0.8
91-57-6	2-Methylnaphthalene	U	10	1.0	10	10	0.6
77-47-4	Hexachlorocyclopentadiene	υ	10	1.0	10	10	2
88-06-2	2,4,6-Trichlorophenol	u	10	1.0	10	10	0.6
95-95-4	2,4,5-Trichlorophenol	\mathbf{v}	25	1.0	25	25	1
91-58-7	2-Chloronaphthalene	U	10	1.0	10	10	0.3
88-74-4	2-Nitroaniline	U	25	1.0	25	25	0.7
208-96-8	Acenaphthylene	U	10	1.0	10	10	0.7
131-11-3	Dimethyl Phthalate	σ	10	1.0	10	10	0.9
606-20-2	2,6-Dinitrotoluene	ប	10	1.0	10	10	0.5
83-32-9	Acenaphthene	U	10	1.0	10	10	0.5
99-09-2	3-Nitroaniline	Ü	25	1.0	25	25	0.8
51-28-5	2,4-Dinitrophenol	U	25	1.0	25	25	5
132-64-9	Dibenzofuran	U	10	1.0	10	10	0.7
100-02-7	4-Nitrophenol	ប	25	1.0	25	25	3
121-14-2	2,4-Dinitrotoluene	U	10	1.0	10	10	0.8
86-73-7	Fluorene	υ	10	1.0	10	10	0.7
					-		

Page 01 of 02 K3793.D

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03 Received Date: 02/01/03

Extraction Date: 02/05/03 Analysis Date: 03/04/03

Report Date: 03/06/2003 Matrix: WATER

Matrix: WATER % Solids: NA

Lab ID: WT0233-7 Client ID: 0103-DUP-01

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
84-66-2	Diethylphthalate	U	10	1.0	10	10	1.0
7005-72-3	4-Chlorophenyl-phenylether	υ	10	1.0	10	10	0.7
100-01-6	4-Nitroaniline	U	25	1.0	25	25	1
534-52-1	4,6-Dinitro-2-Methylphenol	σ	25	1.0	25	25	3
86-30-6	N-Nitrosodiphenylamine/DPA	U	10	1.0	10	10	0.9
122-66-7	1,2-Diphenylhydrazine	ΰ	20	1.0	20	20	3
101-55-3	4-Bromophenyl-phenylether	U	10	1.0	10	10	0.7
118-74-1	Hexachlorobenzene	U	10	1.0	10	10	0.8
87-86-5	Pentachlorophenol	U	25	1.0	25	25	2
85-01-8	Phenanthrene	Ū	10	1.0	10	10	0.8
120-12-7	Anthracene	U	10	1.0	10	10	0.7
86-74-8	Carbazole	υ	10	1.0	10	10	0.9
84-74-2	Di-n-butylphthalate	Ü	10	1.0	10	10	2
206-44-0	Fluoranthene	U	10	1.0	10	10	0.8
92-87-5	Benzidine	υ	50	1.0	50	50	5
129-00-0	Pyrene	U	10	1.0	10	10	1
85-68-7	Butylbenzylphthalate	υ	10	1.0	10	10	1
56-55-3	Benzo(a)anthracene	U	10	1.0	10	10	0.9
218-01-9	Chrysene	U	10	1.0	10	10	1
91-94-1	3,3'-Dichlorobenzidine	U	10	1.0	10	10	0.7
117-81-7	bis(2-Ethylhexyl)phthalate	U	10	1.0	10	10	1
117-84-0	Di-n-octylphthalate	U	10	1.0	10	10	1
205-99-2	Benzo(b) fluoranthene	U	10	1.0	10	10	1
207-08-9	Benzo(k)fluoranthene	U	10	1.0	10	10	2
50-32-8	Benzo(a)pyrene	U	10	1.0	10	10	1
193-39-5	Indeno(1,2,3-cd)pyrene	U	10	1.0	10	10	1
53-70-3	Dibenzo(a,h)anthracene	U	10	1.0	10	10	1
191-24-2	Benzo(g,h,i)perylene	U	10	1.0	10	10	1
10595-95-6	N-Nitrosomethylethylamine	U	10	1.0	10	10	1.0
66-27-3	Methyl Methanesulfonate	U	20	1.0	20	20	1
55-18-5	N-Nitrosodiethylamine	U	20	1.0	20	20	0.7
62-50-0	Ethyl Methanesulfonate	Ū	10	1.0	10	10	1
930-55-2	N-Nitrosopyrrolidine	U	10	1.0	10	10	0.9
59-89-2	N-Nitrosomorpholine	U	10	1.0	10	10	0.9
95-53-4	o-Toluidine	U	10	1.0	10	10	0.7
98-86-2	Acetophenone	U	10	1.0	10	10	0.7
100-75-4	N-Nitrosopiperidine	υ	10	1.0	10	10	0.6
126-68-1	0,0,0-Triethylphosphorothioat	U	20	1.0	20	20	0.7
87-65-0	2,6-Dichlorophenol	U	10	1.0	10	10	0.6
1888-71-7	Hexachloropropene	Ü	10	1.0	10	10	0.6
122-09-8	A, A-Dimethylphenethylamine	U	10	1.0	10	10	10
924-16-3	N-Nitroso-Di-N-Butylamine	U	10	1.0	10	10	0.7
120-58-1	Isosafrole	U	20	1.0	20	20	0.8
						====	

Page 02 of 03 K3793.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03

Received Date: 02/01/03
Extraction Date: 02/05/03

Analysis Date: 03/04/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-7 Client ID: 0103-DUP-01

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	p-Phenylenediamine	U	10	1.0	10	10	2
95-94-3	1,2,4,5-Tetrachlorobenzene	U	10	1.0	10	10	0.6
94-59-7	Safrole	U	10	1.0	10	10	1
130-15-4	1,4-Naphthoquinone	υ	10	1.0	10	10	1
99-65-0	1,3-Dinitrobenzene	U	10	1.0	10	10	10
608-93-5	Pentachlorobenzene	U	10	1.0	10	10	0.9
	2-Naphthylamine	U	10	1.0	10	10	.1
134-32-7	1-Naphthylamine	U	10	1.0	10	10	1
58-90-2	2,3,4,6-Tetrachlorophenol	U	10	1.0	10	10	1.0
	0,0-diethyl-o-2-pyrazinylphos	U	20	1.0	20	20	0.9
99-55-8	5-Nitro-O-Toluidine	ប	20	1.0	20	20	0.4
	Sulfotepp	U	10	1.0	10	10	2
99-35-4	1,3,5-Trinitrobenzene	ប	10	1.0	10	10	2
298-02-2	Phorate	σ	10	1.0	10	10	0.6
2303-16-4	Diallate	Ŭ	20	1.0	20	20	0.6
62-44-2	Phenacetin	U	10	1.0	10	10	1
60-51-5	Dimethoate	U	10	1.0	10	10	1
92-67-1	4-Aminobiphenyl	U	10	1.0	10	10	0.2
82-68-8	Pentachloronitrobenzene	U	10	1.0	10	10	0.9
23950-58-5	Pronamide	U	10	1.0	10	10	0.9
298-04-4	Disulfoton	υ	10	1.0	10	10	0.6
298-00-0	Methyl Parathion	U	10	1.0	10	10	0.5
	4-Nitroquinoline-1-0xide	U	. 20	1.0	20	20	20
91-80-5	Methapyrilene	U	10	1.0	10	10	4
465-73-6	Isodrin	U	20	1.0	20	20	1
140-57-8	Aramite	U	20	1.0	20	20	3
	p-Dimethylaminoazobenzene	U	20	1.0	20	20	0.9
510-15-6	Chlorobenzilate	U	20	1.0	20	20	.1
143-50-0	Kepone	U	10	1.0	10	10	10
52-85-7	Famphur	U	10	1.0	10	10	2
119-93-7	3,3'-Dimethylbenzidine	U	20	1.0	20	20	2
53-96-3	2-Acetylaminofluorene	U	10	1.0	10	10	0.9
56-49-5	3-Methylcholanthrene	U	10	1.0	10	10	0.6
57-97-6	7,12-Dimethylbenz(A)Anthracen	U	10	1.0	10	10	1
70-30-4	Hexachlorophene	ប	10	1.0	10	10	10
367-12-4	2-Fluorophenol		71%				
13127-88-3	Phenol-D6		83%				
4165-60-0	Nitrobenzene-D5		68%				
321-60-8	2-Fluorobiphenyl		81%				
118-79-6	2,4,6-Tribromophenol		120%				
1718-51-0	Terphenyl-D14		82%				

Page 03 of 03 K3793.D

Data File: \\Target_server\GG\chem\gcms-k.i\k030403.b\K3793.D Page 5

Report Date: 06-Mar-2003 18:47

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc Lab Smp Id: WT0233-7

Operator : JJC Sample Location:

Sample Matrix: WATER

Analysis Type: SV

Inj Date: 04-MAR-2003 17:14

Client SDG: CTO233-4

Client Smp ID: 0103-DUP-01

Sample Date: 31-JAN-2003

Sample Point:

Date Received:01-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/L

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
========		======	=== ======	=====

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03 Received Date: 02/01/03

Extraction Date: 02/05/03 Analysis Date: 03/03/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-6 Client ID: S1MW-7-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
109-06-8	2-Picoline	U	10	1.0	10	10	1
110-86-1	Pyridine	υ	50	1.0	50	50	0.8
62-75-9	N-Nitrosodimethylamine	U	20	1.0	20	20	2
62-53 - 3	Aniline	υ	10	1.0	10	10	0.6
108-95-2	Phenol	υ	10	1.0	10	10	0.8
111-44-4	Bis(2-Chloroethyl)ether	U	10	1.0	10	10	0.9
95-57 - 8	2-Chlorophenol	U	10	1.0	10	10	1
541-73 - 1	1,3-Dichlorobenzene	U	10	1.0	10	10	0.7
106-46-7	1,4-Dichlorobenzene	υ	10	1.0	10	10	0.6
95-50-1	1,2-Dichlorobenzene	υ	10	1.0	10	10	0.7
100-51-6	Benzyl alcohol	σ	20	1.0	20	20	2
108-60-1	Bis(2-Chloroisopropyl)ether	ប	10	1.0	10	10	3
95-48-7	2-Methylphenol	υ	10	1.0	10	10	0.8
67-72-1	Hexachloroethane	υ	10	1.0	10	10	0.6
621-64-7	N-Nitroso-di-n-propylamine	υ	10	1.0	10	10	0.8
106-44-5	3&4-Methylphenol	υ	10	1.0	10	10	2
98-95-3	Nitrobenzene	U	10	1.0	10	10	1
78-59-1	Isophorone	ប	10	1.0	10	10	0.8
88-75 - 5	2-Nitrophenol	υ	10	1.0	10	10	0.4
105-67-9	2,4-Dimethyphenol	ប	10	1.0	10	10	0.7
111-91-1	Bis(2-Chloroethoxy)methane	υ	10	1.0	10	10	1
120-83-2	2,4-Dichlorophenol	υ	10	1.0	10	10	1
120-82-1	1,2,4-Trichlorobenzene	υ	10	1.0	10	10	0.8
91-20-3	Naphthalene	U	10	1.0	10	10	0.6
106-47-8	4-Chloroaniline	U	10	1.0	10	10	0.5
87-68-3	Hexachlorobutadiene	ប	10	1.0	10	10	0.3
59-50-7	4-Chloro-3-Methylphenol	U	10	1.0	10	10	0.8
91 - 57-6	2-Methylnaphthalene	Ū	10	1.0	10	10	0.6
77-47-4	Hexachlorocyclopentadiene	υ	10	1.0	10	10	2
88-06-2	2,4,6-Trichlorophenol	σ	10	1.0	10	1Õ [°]	0.6
95-95-4	2,4,5-Trichlorophenol	ប	25	1.0	25	25	1
91-58 - 7	2-Chloronaphthalene	υ	10	1.0	10	10	0.3
88-74-4	2-Nitroaniline	U	25	1.0	25	25	0.7
208-96-8	Acenaphthylene	U	10	1.0	10	10	0.7
131-11-3	Dimethyl Phthalate	U	10	1.0	10	10	0.9
606-20-2	2,6-Dinitrotoluene	ប	10	1.0	10	10	0.5
83-32-9	Acenaphthene	ប	10	1.0	10	10	0.5
99-09-2	3-Nitroaniline	U	25	1.0	25	25	0.9
51-28-5	2,4-Dinitrophenol	U	25	1.0	25	25	5
132-64-9	Dibenzofuran	U	10	1.0	10	10	0.7
100-02-7	4-Nitrophenol	U	25	1.0	25	25	3
121-14-2	2,4-Dinitrotoluene	U	10	1.0	10	10	0.9
86-73-7	Fluorene	U	10	1.0	10	10	0.8

Page 01 of 02 K3785.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/05/03

Analysis Date: 03/03/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-6 Client ID: S1MW-7-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	D F	PQL	Adj.PQL	Adj.MDL
84-66-2	Diethylphthalate	U	10	1.0	10	10	1
7005-72-3	4-Chlorophenyl-phenylether	U	10	1.0	10	10	0.8
100-01-6	4-Nitroaniline	U	25	1.0	25	25	1
534-52-1	4,6-Dinitro-2-Methylphenol	ช	25	1.0	25	25	3
86-30-6	N-Nitrosodiphenylamine/DPA	U	10	1.0	10	10	1.0
122-66-7	1,2-Diphenylhydrazine	U	20	1.0	20	20	4
101-55-3	4-Bromophenyl-phenylether	U	10	1.0	10	10	0.7
118-74-1	Hexachlorobenzene	U	10	1.0	10	10	0.8
87-86-5	Pentachlorophenol	U	25	1.0	25	25	2
85-01-8	Phenanthrene	U	10	1.0	10	10	0.8
120-12-7	Anthracene	υ	10	1.0	10	10	0.7
86-74-8	Carbazole	U	10	1.0	10	10	0.9
84-74-2.	Di-n-butylphthalate	υ	10	1.0	10	10	2
. 206-44-0	Fluoranthene	U	10	1.0	10	10	0.8
92-87-5	Benzidine	υ	50	1.0	50	50	6
129-00-0	Pyrene	U	10	1.0	10	10	1
85-68-7	Butylbenzylphthalate	U	10	1.0	10	10	1
56-55-3	Benzo(a)anthracene	U	10	1.0	10	10	1.0
218-01-9	Chrysene	υ	10	1.0	10	10	1
91-94-1	3,3'-Dichlorobenzidine	U	10	1.0	10	10	0.8
117-81-7	bis(2-Ethylhexyl)phthalate	υ	10	1.0	10	10	2
117-84-0	Di-n-octylphthalate	Ū	10	1.0	10	10	1
205-99-2	Benzo(b) fluoranthene	U	10	1.0	10	10	1
207-08-9	Benzo(k) fluoranthene	υ	10	1.0	10	10	2
50-32-8	Benzo(a)pyrene	U	10	1.0	10	10	1
193-39-5	Indeno(1,2,3-cd)pyrene	U	10	1.0	10	10	1
53-70-3	Dibenzo(a,h)anthracene	U	10	1.0	10	10	1
191-24-2	Benzo(g,h,i)perylene	U	10	1.0	10	10	1
10595-95-6	N-Nitrosomethylethylamine	υ	10	1.0	10	10	1.0
66-27-3	Methyl Methanesulfonate	U	20	1.0	20	20	1
55-18-5	N-Nitrosodiethylamine	U	20	1.0	20	20	0.7
62-50-0	Ethyl Methanesulfonate	U	10	1.0	10	10	1
930-55-2	N-Nitrosopyrrolidine	U	10	1.0	10	10	0.9
59-89-2	N-Nitrosomorpholine	Ū	10	1.0	10	10	1.0
95-53-4	o-Toluidine	U	10	1.0	10	10	0.7
98-86-2	Acetophenone	U	10	1.0	10	10	0.7
100-75-4	N-Nitrosopiperidine	U	10	1.0	10	10	0.6
126-68-1	0,0,0-Triethylphosphorothioat	บ	20	1.0	20	20	0.8
87-65-0	2,6-Dichlorophenol	U	10	1.0	10	10	0.6
1888-71-7	Hexachloropropene	U	10	1.0	10	10	0.6
122-09-8	A, A-Dimethylphenethylamine	U	10	1.0	10	10	10
924-16-3	N-Nitroso-Di-N-Butylamine	U	10	1.0	10	10	0.7
120-58-1	Isosafrole	U	20	1.0	20	20	0.8

Page 02 of 03 K3785.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03

Extraction Date: 02/05/03 Analysis Date: 03/03/03

Report Date: 03/06/2003 Matrix: WATER % Solids: NA Lab ID: WT0233-6 Client ID: S1MW-7-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	p-Phenylenediamine	U	10	1.0	10	10	2
95-94-3	1,2,4,5-Tetrachlorobenzene	U	10	1.0	10	10	0.6
94-59-7	Safrole	U	10	1.0	10	10	1
130-15-4	1,4-Naphthoquinone	U	10	1.0	10	10	1
99-65-0	1,3-Dinitrobenzene	υ	10	1.0	10	10	10
608-93-5	Pentachlorobenzene	υ	10	1.0	10	10	0.9
	2-Naphthylamine	υ	10	1.0	10	10	1
134-32-7	1-Naphthylamine	U	10	1.0	10	10	1
58-90-2	2,3,4,6-Tetrachlorophenol	Ū	10	1.0	10	10	1
	0,0-diethyl-o-2-pyrazinylphos	υ	20	1.0	20	20	1.0
99-55-8	5-Nitro-O-Toluidine	U	20	1.0	20	20	0.4
	Sulfotepp	U	10	1.0	10	10	2
99-35-4	1,3,5-Trinitrobenzene	U	10	1.0	10	10	2
298-02-2	Phorate	U	10	1.0	10	10	0.6
2303-16-4	Diallate	U	20	1.0	20	20	0.6
62-44-2	Phenacetin	U	10	1.0	10	10	1
60-51-5	Dimethoate	U	10	1.0	10	10	1
92-67-1	4-Aminobiphenyl	U	10	1.0	10	10	0.2
82-68-8	Pentachloronitrobenzene	υ	10	1.0	10	10	0.9
23950-58-5	Pronamide	υ	10	1.0	10	10	0.9
298-04-4	Disulfoton	U	10	1.0	10	10	0.6
298-00-0	Methyl Parathion	U	10	1.0	10	10	0.6
	4-Nitroquinoline-1-Oxide	υ	20	1.0	.20	20	20
91-80-5	Methapyrilene	U	10	1.0	10	10	4
465-73-6	Isodrin	U	20	1.0	20	20	1
140-57-8	Aramite	U	20	1.0	20	20	3
	p-Dimethylaminoazobenzene	ΰ	20	1.0	20	20	0.9
510-15-6	Chlorobenzilate	U	20	1.0	20	20	1
143-50-0	Kepone	U	10	1.0	10	10	10
52-85-7	Famphur	U	10	1.0	10	10	2
119-93-7	3,3'-Dimethylbenzidine	U	20	1.0	20	20	2
53-96-3	2-Acetylaminofluorene	U	10	1.0	10	10	0.9
56-49-5	3-Methylcholanthrene	U	10	1.0	10	10	0.7
57-97-6	7,12-Dimethylbenz(A)Anthracen	U	10	1.0	10	10	2
70-30-4	Hexachlorophene	U	10	1.0	10	10	10
367-12-4	2-Fluorophenol		46%				
13127~88-3	Phenol-D6		68%				
4165-60-0	Nitrobenzene-D5		80%				
321-60-8	2-Fluorobiphenyl		79%				
118-79-6	2,4,6-Tribromophenol		78%				
1718-51-0	Terphenyl-D14		76%				

Page 03 of 03 K3785.D

Data File: \\Target_server\GG\chem\gcms-k.i\k030303.b\K3785.D Report Date: 06-Mar-2003 18:34 Page 5

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0233-6
Operator: JJC
Sample Location:
Sample Matrix: WATER
Analysis Type: SV
Inj Date: 03-MAR-2003 23:30

Client SDG: CTO233-4

Client Smp ID: S1MW-7-0103 Sample Date: 31-JAN-2003

Sample Point:

Date Received:01-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (uq/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	· Q
=======================================		=======		=====
		1		Ì
				l

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CT0233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/05/03 Analysis Date: 03/04/03

Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-10 Client ID: S1SW-1-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
109-06-8	2-Picoline	υ	10	1.0	10	10	1
110-86-1	Pyridine	Ū	50	1.0	50	50	0.8
62-75-9	N-Nitrosodimethylamine	Ū	20	1.0	20	20	2
62-53-3	Aniline	บ	10	1.0	10	10	0.6
108-95-2	Phenol	ប	10	1.0	10	10	0.8
111-44-4	Bis(2-Chloroethyl)ether	υ	10	1.0	10	10	0.9
95-57-8	2-Chlorophenol	U	10	1.0	10	10	1.0
541-73-1	1,3-Dichlorobenzene	U	10	1.0	10	10	0.7
106-46-7	1,4-Dichlorobenzene	U	10	1.0	10	10	0.6
95-50-1	1,2-Dichlorobenzene	U	10	1.0	10	10	0.7
100-51-6	Benzyl alcohol	υ	20	1.0	20	20	2
108-60-1	Bis(2-Chloroisopropyl)ether	υ	10	1.0	10	10	3
95-48-7	2-Methylphenol	υ	10	1.0	10	10	0.8
67-72-1	Hexachloroethane	U	10	1.0	10	10	0.6
621-64-7	N-Nitroso-di-n-propylamine	U	10	1.0	10	10	0.7
106-44-5	3&4-Methylphenol	U	10	1.0	10	10	2
98-95-3	Nitrobenzene	ប	10	1.0	10	10	1.0
78-59-1	Isophorone	U	10	1.0	10	10	0.8
88-75-5	2-Nitrophenol	U	10	1.0	10	10	0.4
105-67-9	2,4-Dimethyphenol	U	10	1.0	10	10	0.7
111-91-1	Bis(2-Chloroethoxy)methane	${f v}$	10	1.0	10	10	1
120-83-2	2,4-Dichlorophenol	Ŭ	10	1.0	10	10	1.0
120-82-1	1,2,4-Trichlorobenzene	υ	10	1.0	10	10	0.8
91-20-3	Naphthalene	ប	10	1.0	10	10	0.6
106-47-8	4-Chloroaniline	U	10	1.0	10	10	0.5
87-68-3	Hexachlorobutadiene	Ū	10	1.0	10	10	0.3
59-50-7	4-Chloro-3-Methylphenol	บ	10	1.0	10	10	0.8
91-57-6	2-Methylnaphthalene	U	10	1.0	10	10	0.6
77-47-4	Hexachlorocyclopentadiene	σ	10	1.0	10	10	2
88-06-2	2,4,6-Trichlorophenol	U	10	1.0	10	10	0.6
-95-95-4	2,4,5-Trichlorophenol	U	25	1.0	25	25	1
91-58-7	2-Chloronaphthalene	U	10	1.0	10	10	0.3
88-74-4	2-Nitroaniline	U	25	1.0	25	25	0.6
208-96-8	Acenaphthylene	U	10	1.0	10	10	0.7
131-11-3	Dimethyl Phthalate	υ	10	1.0	10	10	0.9
606-20-2	2,6-Dinitrotoluene	U	10	1.0	10	10	0.5
83-32-9	Acenaphthene	บั	10	1.0	10	10	0.5
99-09-2	3-Nitroaniline	U	25	1.0	25	25	0.8
51-28-5	2,4-Dinitrophenol	Ū	25	1.0	25	25	5
132-64-9	Dibenzofuran	U	10	1.0	10	10	0.7
100-02-7	4-Nitrophenol	ប	25	1.0	25	25	3
121-14-2	2,4-Dinitrotoluene	U	10	1.0	10	10	0.8
86-73-7	Fluorene	U	10	1.0	10	10	0.7

Page 01 of 02 K3794.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CT0233

PO No:

Sample Date: 02/01/03
Received Date: 02/04/03
Extraction Date: 02/05/03
Analysis Date: 03/04/03

Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-10 Client ID: S1SW-1-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
84-66-2	Diethylphthalate	U	10	1.0	10	10	1.0
7005-72-3	4-Chlorophenyl-phenylether	U	10	1.0	10	10	0.7
100-01-6	4-Nitroaniline	U	25	1.0	25	25	1
534-52-1	4,6-Dinitro-2-Methylphenol	υ	25	1.0	25	25	3
86-30-6	N-Nitrosodiphenylamine/DPA	U	10	1.0	10	10	0.9
122-66-7	1,2-Diphenylhydrazine	υ	20	1.0	20	20	3
101-55-3	4-Bromophenyl-phenylether	U	10	1.0	10	10	0.7
118-74-1	Hexachlorobenzene	U	10	1.0	10	10	0.8
87-86-5	Pentachlorophenol	υ	25	1.0	25	25	2
85-01-8	Phenanthrene	U	10	1.0	10	10	0.8
120-12-7	Anthracene	U	10	1.0	10	10	0.6
86-74-8	Carbazole	υ	10	1.0	10	10	0.8
84-74-2	Di-n-butylphthalate	U	10	1.0	10	10	2
206-44-0	Fluoranthene	U	10	1.0	10	10	0.8
92-87-5	Benzidine	U	50	1.0	50	50	5
129-00-0	Pyrene	U	10	1.0	10	10	1
85-68-7	Butylbenzylphthalate	ប	10	1.0	10	10	1
56-55-3	Benzo(a)anthracene	υ	10	1.0	10	10	0.9
218-01-9	Chrysene	U	10	1.0	10	10	1
91-94-1	3,3'-Dichlorobenzidine	ប	10	1.0	10	10	0.7
117-81-7	bis(2-Ethylhexyl)phthalate	υ	10	1.0	10	10	1
117-84-0	Di-n-octylphthalate	U	10	1.0	10	10	1
205-99-2	Benzo(b) fluoranthene	U	10	1.0	10	10	1
207-08-9	Benzo(k) fluoranthene	U	10	1.0	10	10	1
50-32-8	Benzo(a)pyrene	ប	10	1.0	10	10	1
193-39-5	Indeno(1,2,3-cd)pyrene	U	10	1.0	10	10	1.0
53-70-3	Dibenzo(a,h)anthracene	υ	10	1.0	10	10	1
191-24-2	Benzo(g,h,i)perylene	U	10	1.0	10	10	1
10595-95-6	N-Nitrosomethylethylamine	U	10	1.0	10	10	0.9
66-27-3	Methyl Methanesulfonate	σ	20	1.0	20	20	1
55-18-5	N-Nitrosodiethylamine	υ	20	1.0	20	20	0.7
62-50-0	Ethyl Methanesulfonate	U	10	1.0	10	10	1.0
930-55-2	N-Nitrosopyrrolidine	U	10	1.0	10	10	0.9
59-89-2	N-Nitrosomorpholine	บ	10	1.0	10	10	0.9
95-53-4	o-Toluidine	U	10	1.0	10	10	0.6
98-86-2	Acetophenone	U	10	1.0	10	10	0.7
100-75-4	N-Nitrosopiperidine	U	10	1.0	10	10	0.6
126-68-1	0,0,0-Triethylphosphorothioat	U	20	1.0	20	20	0.7
87-65-0	2,6-Dichlorophenol	U	1.0	1.0	10	10	0.6
1888-71-7	Hexachloropropene	U	10	1.0	10	10	0.6
122-09-8	A, A-Dimethylphenethylamine	υ	10	1.0	10	10	10
924-16-3	N-Nitroso-Di-N-Butylamine	U	10	1.0	10	10	0.7
120-58-1	Isosafrole	U	20	1.0	20	20	0.8

Page 02 of 03 K3794.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03

Extraction Date: 02/05/03

Analysis Date: 03/04/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-10 Client ID: S1SW-1-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	p-Phenylenediamine	U	10	1.0	10	10	2
95-94-3	1,2,4,5-Tetrachlorobenzene	U	10	1.0	10	10	0.6
94-59-7	Safrole	U	10	1.0	10	10	1
130-15-4	1,4-Naphthoquinone	U	10	1.0	10	10	1
99-65-0	1,3-Dinitrobenzene	U	10	1.0	10	10	10
608-93-5	Pentachlorobenzene	U	10	1.0	10	10	0.8
	2-Naphthylamine	ΰ	10	1.0	10	10	1
134-32-7	1-Naphthylamine	บ	10	1.0	10	10	1
58-90-2	2,3,4,6-Tetrachlorophenol	U	10	1.0	10	10	1.0
	0,0-diethyl-o-2-pyrazinylphos	υ	20	1.0	20	20	0.9
99-55-8	5-Nitro-O-Toluidine	U	20	1.0	20	20	0.3
	Sulfotepp	ប	10	1.0	10	10	2
99-35-4	1,3,5-Trinitrobenzene	U	10	1.0	10	10	2
298-02-2	Phorate	U	10	1.0	10	10	0.6
2303-16-4	Diallate	U	20	1.0	20	20	0.6
62-44-2	Phenacetin	ប	10	1.0	10	10	1
60-51-5	Dimethoate	U	10	1.0	10	10	1
92-67-1	4-Aminobiphenyl	U	10	1.0	10	10	0.2
82-68-8	Pentachloronitrobenzene	U	10	1.0	10	. 10	0.8
23950-58-5	Pronamide	U	10	1.0	10	10	0.9
298-04-4	Disulfoton	U	10	1.0	10	10	0.6
298-00-0	Methyl Parathion	U	10	1.0	10	10	0.5
	4-Nitroquinoline-1-0xide	U	20	1.0	20	20	19
91-80-5	Methapyrilene	U	10	1.0	10	10	4
465-73-6	Isodrin	U	20	1.0	20	20	1
140-57-8	Aramite	υ	20	1.0	20	20	3
	p-Dimethylaminoazobenzene	\mathbf{u}	20	1.0	20	20	0.9
510-15-6	Chlorobenzilate	U	20	1.0	20	20	1 :
143-50-0	Kepone	U	10	1.0	10	10	10
52-85-7	Famphur	υ	10	1.0	10	10	2
119-93-7	3,3'-Dimethylbenzidine	υ	. 20	1.0	20	20	1
53-96-3	2-Acetylaminofluorene	U	10	1.0	10	10	0.8
56-49-5	3-Methylcholanthrene	Ü	10	1.0	10	10	0.6
57-97-6	7,12-Dimethylbenz(A)Anthracen	υ	10	1.0	10	10	1
70-30-4	Hexachlorophene	U	10	1.0	10	10	10
367-12-4	2-Fluorophenol		64%				
13127-88-3	Phenol-D6		70%				
4165-60-0	Nitrobenzene-D5		66%				
321-60-8	2-Fluorobiphenyl		74%				
118-79-6	2,4,6-Tribromophenol		110%				
1718-51-0	Terphenyl-D14		37%				

Page 03 of 03 K3794.D

Data File: \\Target server\GG\chem\gcms-k.i\k030403.b\K3794.D Page 5

Report Date: 06-Mar-2003 18:48

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0246-10

Operator : JJC Sample Location:

Sample Matrix: WATER Analysis Type: SV

Inj Date: 04-MAR-2003 17:59

Client SDG: CTO233-4

Client Smp ID: S1SW-1-0103 Sample Date: 01-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
E EEEEEEE		=======	=========	=====

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03
Received Date: 02/04/03
Extraction Date: 02/05/03
Analysis Date: 03/03/03
Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-11 Client ID: S1SW-2-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
109-06-8	2-Picoline	U	10	1.0	10	10	1
110-86-1	Pyridine	U	50	1.0	50	50	0.8
62-75~9	N-Nitrosodimethylamine	ប	20	1.0	20	20	2
62-53-3	Aniline	บ	10	1.0	10	10	0.5
108-95-2	Phenol	ប	10	1.0	10	10	0.8
111-44-4	Bis(2-Chloroethyl)ether	υ	10	1.0	10	10	0.8
95-57-8	2-Chlorophenol	U	10	1.0	10	10	0.9
541-73-1	1,3-Dichlorobenzene	υ	10	1.0	10	10	0.7
106-46-7	1,4-Dichlorobenzene	U	10	1.0	10	10	0.6
95-50-1	1,2-Dichlorobenzene	U	10	1.0	10	10	0.7
100-51-6	Benzyl alcohol	U	20	1.0	20	20	2
108-60-1	Bis(2-Chloroisopropyl)ether	υ	10	1.0	10	10	3
95-48-7.	2-Methylphenol	U	10	1.0	10	10	0.8
67-72-1	Hexachloroethane	U	10	1.0	10	10	0.6
621-64-7	N-Nitroso-di-n-propylamine	U	10	1.0	10	10	0.7
106-44-5	3&4-Methylphenol	U	10	1.0	10	10	2
98-95 - 3	Nitrobenzene	υ	10	1.0	10	10	1.0
78-59-1	Isophorone	U	10	1.0	10	10	0.7
88-75-5	2-Nitrophenol	U	10	1.0	10	10	0.4
105-67-9	2,4-Dimethyphenol	ΰ	10	1.0	10	10	0.6
111-91-1	Bis(2-Chloroethoxy)methane	υ	10	1.0	10	10	1
120-83-2	2,4-Dichlorophenol	U	10	1.0	10	10	1.0
120-82-1	1,2,4-Trichlorobenzene	U	10	1.0	10	10	0.8
91-20-3	Naphthalene	σ	10	1.0	10	10	0.5
106-47-8	4-Chloroaniline	U	10	1.0	10	10	0.5
87-68-3	Hexachlorobutadiene	U	10	1.0	10	10	0.3
59-50-7	4-Chloro-3-Methylphenol	U	10	1.0	10	10	0.7
91-57-6	2-Methylnaphthalene	υ	10	1.0	10	10	0.6
77-47-4	Hexachlorocyclopentadiene	υ	10	1.0	10	10	2
88-06-2	2,4,6-Trichlorophenol	υ	10	1.0	10	10	0.6
95-95-4	2,4,5-Trichlorophenol	ប	25	1.0	25	25	1.0
91-58-7	2-Chloronaphthalene	υ	10	1.0	10	10	0.3
88-74-4	2-Nitroaniline	ប	25	1.0	25	25	0.6
208-96-8	Acenaphthylene	U	10	1.0	10	10	0.7
131-11-3	Dimethyl Phthalate	U	10	1.0	10	10	0.8
606-20-2	2,6-Dinitrotoluene	ប	10	1.0	10	10	0.5
83-32-9	Acenaphthene	U	10	1.0	10	10	0.5
99-09-2	3-Nitroaniline	U	25	1.0	25	25	0.8
51-28-5	2,4-Dinitrophenol	U	25	1.0	25	25	5
132-64-9	Dibenzofuran	U	10	1.0	10	10	0.7
100-02-7	4-Nitrophenol	U	25	1.0	25	25	3
121-14-2	2,4-Dinitrotoluene	U	10	1.0	10	10	0.8
86-73-7	Fluorene	U	10	1.0	10	10	0.7
			-				

Page 01 of 02 K3784.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/05/03

Analysis Date: 03/03/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-11 Client ID: S1SW-2-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
84-66-2	Diethylphthalate	υ	10	1.0	10	10	1.0
7005-72-3	4-Chlorophenyl-phenylether	U	10	1.0	10	10	0.7
100-01-6	4-Nitroaniline	U	25	1.0	25	25	1.0
534-52-1	4,6-Dinitro-2-Methylphenol	ซ	25	1.0	25	25	3
86-30-6	N-Nitrosodiphenylamine/DPA	บ	10	1.0	10	10	0.9
122-66-7	1,2-Diphenylhydrazine	U	20	1.0	20	20	3
101-55-3	4-Bromophenyl-phenylether	u	10	1.0	10	10	0.7
118-74-1	Hexachlorobenzene	U	10	1.0	10	10	0.8
87-86-5	Pentachlorophenol	U	25	1.0	25	25	2
85-01-8	Phenanthrene	U	10	1.0	10	10	0.7
120-12-7	Anthracene	U	10	1.0	10	10	0.6
86-74-8	Carbazole	U	10	1.0	10	10	0.8
84-74-2.	Di-n-butylphthalate	υ.	10	1.0	10	10	2
. 206-44-0	Fluoranthene	υ	10	1.0	10	10	0.8
92-87-5	Benzidine	U	50	1.0	50	50	5
129-00-0	Pyrene	U	10	1.0	10	10	1
85-68-7	Butylbenzylphthalate	U	10	1.0	10	10	1
56~55~3	Benzo (a) anthracene	ប	10	1.0	10	10	0.9
218-01-9	Chrysene	U	10	1.0	10	10	1.0
91-94-1	3,3'-Dichlorobenzidine	υ	10	1.0	10	10	0.7
117-81-7	bis(2-Ethylhexyl)phthalate	σ	10	1.0	10	10	1
117-84-0	Di-n-octylphthalate	U	10	1.0	10	10	1.0
205-99-2	Benzo(b) fluoranthene	σ	10	1.0	10	10	1.0
207-08-9	Benzo(k)fluoranthene	U	10	1.0	10	10	1
50 - 32-8	Benzo(a)pyrene	U	10	1.0	10	10	1.0
193-39-5	Indeno(1,2,3-cd)pyrene	U	10	1.0	10	10	1.0
53-70-3	Dibenzo(a,h)anthracene	υ	10	1.0	10	10	1
191-24-2	Benzo(g,h,i)perylene	U	10	1.0	10	10	1
10595-95-6	N-Nitrosomethylethylamine	U	10	1.0	10	10	0.9
66-27-3	Methyl Methanesulfonate	U	20	1.0	20	20	1
55-18-5	N-Nitrosodiethylamine	U	20	1.0	20	20	0.7
62-50-0	Ethyl Methanesulfonate	U	1.0	1.0	10	10	1.0
930-55-2	N-Nitrosopyrrolidine	υ	10	1.0	10	10	0.9
59-89-2	N-Nitrosomorpholine	U	10	1.0	10	10	0.9
95-53-4	o-Toluidine	U	10	1.0	10	10	0.6
98-86-2	Acetophenone	U	10	1.0	10	10	0.6
100-75-4	N-Nitrosopiperidine	U	10	1.0	10	10	0.6
126-68-1	0,0,0-Triethylphosphorothioat	U	20	1.0	20	20	0.7
87-65-0	2,6-Dichlorophenol	U	10	1.0	10	10	0.6
1888-71-7	Hexachloropropene	U	10	1.0	10	10	0.6
122-09-8	A, A-Dimethylphenethylamine	U	10	1.0	10	10	9
924-16-3	N-Nitroso-Di-N-Butylamine	U	10	1.0	10	10	0.7
120-58-1	Isosafrole	ū	20	1.0	20	20	0.8
	· · · · · · · · · · · · · · · · · · ·	~		- • -			

Page 02 of 03 K3784.D

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03

Extraction Date: 02/05/03

Analysis Date: 03/03/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-11 Client ID: S1SW-2-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	p-Phenylenediamine	υ	10	1.0	10	10	2
95-94-3	1,2,4,5-Tetrachlorobenzene	U	10	1.0	10	10	0.6
94-59-7	Safrole	υ	10	1.0	10	10	1
130-15-4	1,4-Naphthoquinone	ប	10	1.0	10	10	1
99-65-0	1,3-Dinitrobenzene	ប	10	1.0	10	10	9
608-93-5	Pentachlorobenzene	U	10	1.0	10	10	0.8
	2-Naphthylamine	U	10	1.0	10	10	, 1
134-32-7	1-Naphthylamine	U	10	1.0	10	10	1
58-90-2	2,3,4,6-Tetrachlorophenol	U	10	1.0	10	10	0.9
	0,0-diethyl-o-2-pyrazinylphos	υ	20	1.0	20	20	0.9
99-55-8	5-Nitro-O-Toluidine	U	20	1.0	20	20	0.3
	Sulfotepp	U	10	1.0	10	10	2
99-35-4	1,3,5-Trinitrobenzene	U	10	1.0	10	10	2
. 298-02-2	Phorate	υ	10	1.0	10	10	0.6
2303-16-4	Diallate	σ	20	1.0	20	20	0.6
62-44-2	Phenacetin	σ	10	1.0	10	10	1
60-51-5	Dimethoate	σ	10	1.0	10	10	1
92-67-1	4-Aminobiphenyl	υ	10	1.0	10	10	0.2
82-68-8	Pentachloronitrobenzene	Ū	10	1.0	10	10	0.8
23950-58-5	Pronamide	U	10	1.0	10	10	0.9
298-04-4	Disulfoton	U	10	1.0	10	10	0.6
298-00-0	Methyl Parathion	U	10	1.0	10	10	0.5
•	4-Nitroquinoline-1-Oxide	U	20	1.0	20	20	19
91-80-5	Methapyrilene	υ	10	1.0	10	10	4
465-73-6	Isodrin	U	20	1.0	20	20	1
140-57-8	Aramite	U	20	1.0	20	20	3
	p-Dimethylaminoazobenzene	U	20	1.0	20	20	0.9
510 - 15-6	Chlorobenzilate	U	20	1.0	20	20	1
143-50-0	Kepone	U	10	1.0	10	10	9
52 - 85- 7	Famphur	U	10	1.0	10	10	2
119-93-7	3,3'-Dimethylbenzidine	Ū	20	1.0	20	20	1
53-96-3	2-Acetylaminofluorene	U	10	1.0	10	10	0.8
56-49-5	3-Methylcholanthrene	U	10	1.0	10	10	0.6
57-97 - 6	7,12-Dimethylbenz(A)Anthracen	U	10	1.0	10	10	1
70-30-4	Hexachlorophene	U	10	1.0	10	10	9
367-12-4	2-Fluorophenol		* 15%				
13127-88-3	Phenol-D6		45%				
4165-60-0	Nitrobenzene-D5		61%				
321-60-8	2-Fluorobiphenyl		79%				
118-79-6	2,4,6-Tribromophenol		44%				
1718-51-0	Terphenyl-D14		41%				

Page 03 of 03 K3784.D

Data File: \\Target_server\GG\chem\gcms-k.i\k030303.b\K3784.D Page 5

Report Date: 06-Mar-2003 18:34

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc Lab Smp Id: WT0246-11 Operator : JJC

Sample Location:

Sample Matrix: WATER

Analysis Type: SV

Inj Date: 03-MAR-2003 22:45

Client SDG: CTO233-4

Client Smp ID: S1SW-2-0103 Sample Date: 01-FEB-2003

Sample Point:

Date Received: 04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======	=======================================	=====

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/04/03

Analysis Date: 02/28/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-3

Client ID: FC-MW-05-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3510

Analyst: JJC

Analysis Method: SW846 M8270C

Lab Prep Batch: WG1567

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
91-20-3	Naphthalene	U	0.20	1.0	0.20	0.20	0.049
91-57-6	2-Methylnaphthalene	· U	0.20	1.0	0.20	0.20	0.078
208-96-8	Acenaphthylene	ŭ	0.20	1.0	0.20	0.20	0.049
83-32-9	Acenaphthene	U	0.20	1.0	0.20	0.20	0.078
86-73-7	Fluorene	U	0.20	1.0	0.20	0.20	0.059
85-01-8	Phenanthrene	υ	0.20	1.0	0.20	0.20	0.078
120-12-7	Anthracene	σ	0.20	1.0	0.20	0.20	0.078
206-44-0	Fluoranthene	σ	0.20	1.0	0.20	0.20	0.11
129-00-0	Pyrene	υ	0.20	1.0	0.20	0.20	0.088
56-55-3	Benzo(a) anthracene	ਹ	0.20	1.0	0.20	0.20	0.12
218-01-9	Chrysene	U	0.20	1.0	0.20	0.20	0.069
205-99-2	Benzo(b)fluoranthene	ប	0.20	1.0	0.20	0.20	0.088
207-08-9	Benzo(k)fluoranthene	U	0.20	1.0	0.20	0.20	0.078
50-32-8	Benzo(a)pyrene	σ	0.20	1.0	0.20	0.20	0.088
193-39-5	Indeno(1,2,3-cd)pyrene	σ	0.20	1.0	0.20	0.20	0.098
53-70-3	Dibenzo(a,h)anthracene	σ	0.20	1.0	0.20	0.20	0.15
191-24-2	Benzo(g,h,i)perylene	τ	0.20	1.0	0.20	0.20	0.078
90-12-0	<pre>1-Methylnaphthalene</pre>	ប	0.20	1.0	0.20	0.20	0.078
4165-60-0	Nitrobenzene-D5		121%				
321-60-8	2-Fluorobiphenyl		66%				
1718-51-0	Terphenyl-D14		62%				

Page 01 of 01 X2247.D

Data File: \\Target_server\GG\chem\gcms-x.i\x022803.b\X2247.D

Report Date: 05-Mar-2003 18:50

Page 5

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc Lab Smp Id: WT0233-3 Operator: JJC

Sample Location: Sample Matrix: WATER Analysis Type: SV Inj Date: 28-FEB-2003 20:45

Client SDG: CTO233-4

Client Smp ID: FC-MW-05-0103

Sample Date: 31-JAN-2003

Sample Point:

Date Received:01-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	=======	=======================================	=====
1			<u> </u>	
1	I			

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/04/03
Analysis Date: 02/28/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-3

Client ID: FC-MW-05-0103-RA

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3510

Analyst: JJC

Analysis Method: SW846 M8270C

Lab Prep Batch: WG1567

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
91-20-3	Naphthalene	U	0.20	1.0	0.20	0.20	0.049
91-57-6	2-Methylnaphthalene	υ	0.20	1.0	0.20	0.20	0.078
208-96-8	Acenaphthylene	υ	0.20	1.0	0.20	0.20	0.049
83-32-9	Acenaphthene	ū ·	0.20	1.0	0.20	0.20	0.078
86-73-7	Fluorene	ប	0.20	1.0	0.20	0.20	0.059
85-01-8	Phenanthrene	U	0.20	1.0	0.20	0.20	0.078
120-12-7	Anthracene	ប	0.20	1.0	0.20	0.20	0.078
206-44-0	Fluoranthene	U	0.20	1.0	0.20	0.20	0.11
129-00-0	Pyrene	U	0.20	1.0	0.20	0.20	0.088
56-55-3	Benzo(a)anthracene	U	0.20	1.0	0.20	0.20	0.12
218-01-9	Chrysene	υ	0.20	1.0	0.20	0.20	0.069
205-99-2	Benzo(b)fluoranthene	υ	0.20	1.0	0.20	0.20	0.088
207-08-9	Benzo(k)fluoranthene	U	0.20	1.0	0.20	0.20	0.078
50-32-8	Benzo(a)pyrene	U	0.20	1.0	0.20	0.20	0.088
193-39-5	Indeno(1,2,3-cd)pyrene	U	0.20	1.0	0.20	0.20	0.098
53-70-3	Dibenzo(a,h)anthracene	U	0.20	1.0	0.20	0.20	0.15
191-24-2	Benzo(g,h,i)perylene	U	0.20	1.0	0.20	0.20	0.078
90-12-0	1-Methylnaphthalene	U	0.20	1.0	0.20	0.20	0.078
4165-60-0	Nitrobenzene-D5		97%				
321-60-8	2-Fluorobiphenyl		64%				
1718-51-0	Terphenyl-D14		68%				

Page 01 of 01 X2250.D

Data File: \\Target_server\GG\chem\gcms-x.i\x022803.b\X2250.D

Report Date: 05-Mar-2003 18:50

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0233-3

Operator : JJC Sample Location:

Sample Matrix: WATER

Analysis Type: SV Inj Date: 28-FEB-2003 22:49

Number TICs found: 0

Client SDG: CTO233-4

Client Smp ID: FC-MW-05-0103-RA Sample Date: 31-JAN-2003 Sample Point:

Page 5

Date Received:01-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
		1	ł	1

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03 Received Date: 02/01/03 Extraction Date: 02/04/03 Analysis Date: 02/28/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-1

Client ID: FC-MW-06-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3510

Analyst: JJC

Analysis Method: SW846 M8270C

Lab Prep Batch: WG1567

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
91-20-3	Naphthalene	U	0.20	1.0	0.20	0.20	0.047
91-57-6	2-Methylnaphthalene	ប	0.20	1.0	0.20	0.20	0.075
208-96-8	Acenaphthylene	U	0.20	1.0	0.20	0.20	0.047
83-32-9	Acenaphthene	υ .	0.20	1.0	0.20	0.20	0.075
86-73-7	Fluorene	υ	0.20	1.0	0.20	0.20	0.057
85-01-8	Phenanthrene	U	0.20	1.0	0.20	0.20	0.075
120-12-7	Anthracene	U	0.20	1.0	0.20	0.20	0.075
206-44-0	Fluoranthene	U	0.20	1.0	0.20	0.20	0.10
129-00-0	Pyrene	U	0.20	1.0	0.20	0.20	0.085
56-55 - 3	Benzo(a)anthracene	U	0.20	1.0	0.20.	0.20	0.11
218-01-9	Chrysene	U	0.20	1.0	0.20	0.20	0.066
205-99-2	Benzo(b)fluoranthene	U	0.20	1.0	0.20	0.20	0.085
207-08-9	Benzo(k)fluoranthene	U	0.20	1.0	0.20	0.20	0.075
50-32-8	Benzo(a)pyrene	\mathbf{u}	0.20	1.0	0.20	0.20	0.085
193-39-5	Indeno(1,2,3-cd)pyrene	ប	0.20	1.0	0.20	0.20	0.094
53-70-3	Dibenzo(a,h)anthracene	ប	0.20	1.0	0.20	0.20	0.14
191-24-2	Benzo(g,h,i)perylene	σ	0.20	1.0	0.20	0.20	0.075
90-12-0	1-Methylnaphthalene	U	0.20	1.0	0.20	0.20	0.075
4165-60-0	Nitrobenzene-D5		79%				
321-60-8	2-Fluorobiphenyl		63%				
1718-51-0	Terphenyl-D14		65%				

Page 01 of 01 X2245.D

Data File: \\Target_server\GG\chem\gcms-x.i\x022803.b\X2245.D Page 5

Report Date: 05-Mar-2003 18:50

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0233-1 Operator : JJC

Sample Location:

Sample Matrix: WATER

Analysis Type: SV

Inj Date: 28-FEB-2003 19:22

Client SDG: CTO233-4

Client Smp ID: FC-MW-06-0103

Sample Date: 31-JAN-2003

Sample Point:

Date Received:01-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		======	========	=====
				l

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/04/03
Analysis Date: 03/05/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-2

Client ID: FC-MW-20R-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3510

Analyst: JJC

Analysis Method: SW846 M8270C

Lab Prep Batch: WG1567

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
91-20-3	Naphthalene		630	250	0.20	52	13
91-57-6	2-Methylnaphthalene		180	250	0.20	52	21
208-96-8	Acenaphthylene	U	52	250	0.20	52	13
83-32-9	Acenaphthene	ับ	52	250	0.20	52	21
86~73-7	Fluorene	υ	52	250	0.20	52	15
85-01-8	Phenanthrene	U	52	250	0.20	52	21
120-12-7	Anthracene	ប	52	250	0.20	52	21
206-44-0	Fluoranthene	Ū	52	250	0.20	52	28
129-00-0	Pyrene	ប	52	250	0.20	52	23
56-55-3	Benzo(a) anthracene	Ū	52	250	0.20	52	31
218-01-9	Chrysene	U	52	250	0.20	52	18
205-99-2	Benzo(b) fluoranthene	U	52	250	0.20	52	23
207-08-9	Benzo(k) fluoranthene	U	52	250	0.20	52	21
50-32-8	Benzo(a)pyrene	U	52	250	0.20	52	23
193-39-5	Indeno(1,2,3-cd)pyrene	U	52	250	0.20	52	26
53-70-3	Dibenzo(a,h)anthracene	U	52	250	0.20	52	39
191-24-2	Benzo(g,h,i)perylene	U	52	250	0.20	52	21
90-12-0	1-Methylnaphthalene	J	46	250	0.20	52	21
4165-60-0	Nitrobenzene-D5		Ď				
321-60-8	2-Fluorobiphenyl		D				
1718-51-0	Terphenyl-D14		D				

Page 01 of 01 X2293.D

Data File: \\Target server\GG\chem\gcms-x.i\x030503.b\X2293.D Page 5

Report Date: 05-Mar-2003 18:35

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name: Tetra Tech NUS, Inc

Lab Smp Id: WT0233-2

Operator : JJC

Sample Location: Sample Matrix: WATER

Analysis Type: SV

Inj Date: 05-MAR-2003 15:16

Client SDG: CTO233-4

Client Smp ID: FC-MW-20R-0103

Sample Date: 31-JAN-2003

Sample Point:

Date Received:01-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
*****		=======		=====

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/04/03
Analysis Date: 02/20/03

Report Date: 02/21/2003 Matrix: WATER

% Solids: NA

Lab ID: WT0233-7 Client ID: 0103-DUP-01

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3510

Analyst: LRS

Analysis Method: SW846 8081A

Lab Prep Batch: WG1560

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
319-84-6	alpha-BHC	σ	0.050	1.0	0.050	0.050	0.025
58-89-9	gamma BHC	ប	0.050	1.0	0.050	0.050	0.022
76-44-8	Heptachlor	บ	0.050	1.0	0.050	0.050	0.024
319-85-7	beta-BHC	σ	0.050	1.0	0.050	0.050	0.042
309-00-2	Aldrin	υ	0.050	1.0	0.050	0.050	0.022
319-86-8	delta-BHC	ប	0.050	1.0	0.050	0.050	0.029
1024-57-3	Heptachlor Epoxide	U	0.050	1.0	0.050	0.050	0.023
959-98-8	Endosulfan I	U	0.050	1.0	0.050	0.050	0.018
72-55-9	4,4'-DDE	U	0.10	1.0	0.10	0.10	0.028
60-57-1	Dieldrin	U	0.10	1.0	0.10	0.10	0.017
72-20-8	Endrin	υ	0.10	1.0	0.10	0.10	0.018
72-54-8	4,4'-DDD	ซ	0.10	1.0	0.10	0.10	0.028
33213-65-9	Endosulfan II	υ	0.10	1.0	0.10	0.10	0.016
50-29-3	4,4'-DDT	υ	0.10	1.0	0.10	0.10	0.030
7421-36-3	Endrin Aldehyde	ט	0.10	1.0	0.10	0.10	0.021
1031-07-8	Endosulfan sulfate	U	0.10	1.0	0.10	0.10	0.023
72-43-5	Methoxychlor	υ	0.50	1.0	0.50	0.50	0.045
8001-35-2	Toxaphene	υ	1.0	1.0	1.0	1.0	0.92
5103-71-9	alpha-Chlordane	υ	0.050	1.0	0.050	0.050	0.019
5103-74-2	gamma-Chlordane	σ	0.050	1.0	0.050	0.050	0.019
53494-70-5	Endrin Ketone	U	0.10	1.0	0.10	0.10	0.020
12789-03-6	Chlordane	U	0.50	1.0	0.50	0.50	0.15
877-09-8	Tetrachloro-m-Xylene		79%				
2051-24-3	Decachlorobiphenyl		88%				

Page 01 of 01 8TB3097.d

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/04/03

Analysis Date: 02/20/03 Report Date: 02/21/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-6 Client ID: S1MW-7-0103

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3510

Analyst: LRS

Analysis Method: SW846 8081A

Lab Prep Batch: WG1560

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL Adj.PQL Adj.MDL
319-84-6	alpha-BHC	υ	0.050	1.0	0.050 0.050 0.025
58-89-9	gamma BHC	σ	0.050	1.0	0.050 0.050 0.022
76-44-8	Heptachlor	σ	0.050	1.0	0.050 0.050 0.024
319-85-7	beta-BHC	υ	0.050	1.0	0.050 0.050 0.042
309-00-2	Aldrin	U	0.050	1.0	0.050 0.050 0.022
319-86-8	delta-BHC	ប	0.050	1.0	0.050 0.050 0.029
1024-57-3	Heptachlor Epoxide	υ	0.050	1.0	0.050 0.050 0.023
959-98-8	Endosulfan I	υ	0.050	1.0	0.050 0.050 0.018
72-55-9	4,4'-DDE	υ	0.10	1.0	0.10 0.10 0.028
60-57-1	Dieldrin	ប	0.10	1.0	0.10 0.10 0.017
72-20-8	Endrin	บ	0.10	1.0	0.10 0.10 0.018
72-54-8	4,4'-DDD	U	0.10	1.0	0.10 0.10 0.028
33213-65-9	Endosulfan II	υ	0.10	1.0	0.10 0.10 0.016
50-29-3	4,4'-DDT	U	0.10	1.0	0.10 0.10 0.030
7421-36-3	Endrin Aldehyde	υ	0.10	1.0	0.10 0.10 0.021
1031-07-8	Endosulfan sulfate	σ	0.10	1.0	0.10 0.10 0.023
72-43-5	Methoxychlor	U	0.50	1.0	0.50 0.50 0.045
8001-35-2	Toxaphene	ប	1.0	1.0	1.0 1.0 0.93
5103-71-9	alpha-Chlordane	U	0.050	1.0	0.050 0.050 0.019
5103-74-2	gamma-Chlordane	υ	0.050	1.0	0.050 0.050 0.019
53494-70-5	Endrin Ketone	σ	0.10	1.0	0.10 0.10 0.020
12789-03-6	Chlordane	ប	0.50	1.0	0.50 0.50 0.15
877-09-8	Tetrachloro-m-Xylene		72%		
2051-24-3	Decachlorobiphenyl		84%		

Page 01 of 01 8TB3096.d

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/07/03 Analysis Date: 02/20/03

Report Date: 02/21/2003

Matrix: WATER % Solids: NA

Lab ID: WT0246-11 Client ID: S1SW-2-0103

SDG: CTO233-4 Extracted by: JCG

Extraction Method: SW846 3510

Analyst: LRS

Analysis Method: SW846 8081A

Lab Prep Batch: WG1590

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adi.POL	Adj.MDL
319-84-6	alpha-BHC	υ	0.050	1.0	0.050	0.050	0.024
58-89-9	gamma BHC	ប	0.050	1.0	0.050	0.050	0.021
76-44-8	Heptachlor	U	0.050	1.0	0.050	0.050	0.023
319-85-7	beta-BHC	U	0.050	1.0	0.050	0.050	0.041
309-00-2	Aldrin	U	0.050	1.0	0.050	0.050	0.021
319-86-8	delta-BHC	U	0.050	1.0	0.050	0.050	0.028
1024-57-3	Heptachlor Epoxide	σ	0.050	1.0	0.050	0.050	0.022
959-98-8	Endosulfan I	U	0.050	1.0	0.050	0.050	0.017
72-55-9	4,4'-DDE	υ	0.10	1.0	0.10	0.10	0.027
60-57-1	Dieldrin	ប	0.10	1.0	0.10	0.10	0.016
72-20-8	Endrin	U	0.10	1.0	0.10	0.10	0.017
72-54-8	4,4'-DDD	σ	0.10	1.0	0.10	0.10	0.027
33213-65-9	Endosulfan II	σ	0.10	1.0	0.10	0.10	0.016
50-29-3	4,4'-DDT	U	0.10	1.0	0.10	0.10	0.029
7421-36-3	Endrin Aldehyde	σ	0.10	1.0	0.10	0.10	0.020
1031-07-8	Endosulfan sulfate	U	0.10	1.0	0.10	0.10	0.022
72-43-5	Methoxychlor	σ	0.50	1.0	0.50	0.50	0.044
8001-35-2	Toxaphene	σ	1.0	1.0	1.0	1.0	0.89
5103-71-9	alpha-Chlordane	· ប	0.050	1.0	0.050	0.050	0.018
5103-74-2	gamma-Chlordane	υ	0.050	1.0	0.050	0.050	0.018
53494-70-5	Endrin Ketone	ប	0.10	1.0	0.10	0.10	0.019
12789-03-6	Chlordane	σ	0.50	1.0	0.50	0.50	0.14
877-09-8	Tetrachloro-m-Xylene		65%				
2051-24-3	Decachlorobiphenyl		72%				

Page 01 of 01 8TB3066.d

Client: Tetra Tech NUS, Inc

Project: PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/06/03
Analysis Date: 02/19/03

Report Date: 02/26/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-3

Client ID: FC-MW-05-0103

SDG: CTO233-4 Extracted by: AB

Extraction Method: SW846 3510

Analyst: SAW

Analysis Method: SW846 M8100

Lab Prep Batch: WG1582

Units: ug/L

CAS# Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
Petroleum Range Organics	υ	500	1.0	500	500	270
n-Triacontane-D62		125%				
O-Terphenyl		104%				

Client: Tetra Tech NUS, Inc

Project: PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/06/03
Analysis Date: 02/19/03
Report Date: 02/26/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-1

Client ID: FC-MW-06-0103

SDG: CTO233-4 Extracted by: AB

Extraction Method: SW846 3510

Analyst: SAW

Analysis Method: SW846 M8100

Lab Prep Batch: WG1582

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	Petroleum Range Organics	υ	500	1.0	500	500	270
	n-Triacontane-D62		122%				
	O-Terphenyl		98%				

01 of 01 CTB2039.d

Page

Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 01/31/03
Received Date: 02/01/03
Extraction Date: 02/06/03
Analysis Date: 02/20/03
Report Date: 02/21/2003

Matrix: WATER % Solids: NA

Lab ID: WT0233-2

Client ID: FC-MW-20R-0103

SDG: CTO233-4 Extracted by: AB

Extraction Method: SW846 3510

Analyst: SAW

Analysis Method: SW846 M8100 Lab Prep Batch: WG1582

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	Petroleum Range Organics		8200	2.0	500	1000	570
	n-Triacontane-D62		142%				
	O-Terphenyl		112%				

Page 01 of 01 CTB2049.d

APPENDIX C SUPPORT DOCUMENTATION

FIELD DUPLICATE PRECISION

ANALYTE	0103-DUP-06	S9MW-14-0103	RPD	DIFFERENCE
1,1-Dichloroethene	1	0.9	10.53	0.1
Benzene	1	1	0.00	0
cis-1,2-Dichloroethene	1300	1000	26.09	300
total 1,2-Dichloroethene	5300	4100	25.53	1200
trans-1,2-Dichloroethene	4000	3000	28.57	1000
ANALYTE	0103-DUP-01	S1MW-7-0103	RPD	DIFFERENCE
No compounds detected.			#DIV/0!	0

Spada, Bernie

From: Lee, Ethan Wednesday, March 05, 2003 1:08 PM Sent: To: Spada, Bernie FW: field duplicate for CTO-233 Subject: ----Original Message----From: McRee, Emily Sent: Wednesday, March 05, 2003 1:00 PM To: Lee, Ethan Subject: FW: field duplicate for CTO-233 Here is the duplicate information for the entire sampling event. ----Original Message----From: McRee, Emily Sent: Friday, February 28, 2003 2:24 PM To: Spada, Bernie Subject: RE: field duplicate for CTO-233 0103-DUP-06 MATCHES S9MW-14-0103 0103-DUP-01 S1MW-7-0103 0103-DUP-02 S1SD-1-0103 0103-DUP-03 S7SW-5-0103 0103-DUP-04 I1MW1-1-0103 0103-DUP-05 I1SD-1-0103 That's all the duplicates we collected. Let me know if you need anything else. Emily ----Original Message----From: Spada, Bernie Sent: Friday, February 28, 2003 8:25 AM To: McRee, Emily Subject: RE: field duplicate for CTO-233 Emily, Any luck on finding that duplicate? Bernie ----Original Message----From: McRee, Emily Sent: Wednesday, February 26, 2003 7:32 AM To: Spada, Bernie Subject: RE: field duplicate for CTO-233 Bernie, I am out in the field right now but will get you the duplicate information

Emily

----Original Message----From: Spada, Bernie
To: McRee, Emily

tomorrow or Friday. Sorry for the delay. Thanks.

Sent: 2/26/03 7:23 AM

Subject: field duplicate for CTO-233

Emily,

Which sample was paired with the Key West CTO-233 SDG-P0302042 duplicate 0103-DUP-06 sampled on February 1? If there are other duplicates associated with this project, please send all the pairings. Thank you for your time.

Bernard F Spada III

Bernard F Spada III

Environmental Scientist

TETRA TECH NUS, Inc.

Foster Plaza 7

661 Andersen Drive

Pittsburgh, PA 15220-2745

Telephone: (412) 921-8729

FAX: (412) 921-4040

spadab@ttnus.com <mailto:spadab@ttnus.com>

<http://www.ttnus.com/> http://www.ttnus.com

http://www.tetratech.com <http://www.tetratech.com/>

Units	Nsample	Lab ld	Qc Type	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
MG/L	0103-DUP-06	WT0246-8	NORMAL	2334	CL	02/01/03	02/28/03	02/28/03	27	0	27
MG/L	0103-DUP-06DUP	WT0246-8 DUP	DUPLICATE	2334	CL	02/01/03	02/28/03	02/28/03	27	0	27
MG/L	LABQC	MBLANK	P BLANK	2334	CL	02/07/03	02/27/03	02/27/03	20	0	20
MG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	CL	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-12-0103DUP	WT0246-2 DUP	DUPLICATE	2334	CL	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-12-0103MS	WT0246-2 MS	MS	2334	CL	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	CL	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	CL	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	CL	02/02/03	02/27/03	02/27/03	25	0	25
MG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	CL	02/02/03	02/28/03	02/28/03	26	О	26
MG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	CL	02/02/03	02/28/03	02/28/03	26	0	26
MG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	CL	02/02/03	02/28/03	02/28/03	26	0	26
MG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	CL	02/01/03	02/27/03	02/27/03	26	0	26
%	FC-MW-05-0103	WT0233-3	NORMAL	2334	EDB	01/31/03	02/10/03	02/10/03	10	0	10
%	FC-MW-06-0103	WT0233-1	NORMAL	2334	EDB	01/31/03	02/10/03	02/10/03	10	0	10
%	FC-MW-20R-0103	WT0233-2	NORMAL	2334	EDB	01/31/03	02/10/03	02/10/03	10	0	10
%	WG1604-BLANK	WG1604-1	P BLANK	2334	EDB	02/10/03	02/10/03	02/10/03	0	0	0
%	WG1604-LCS	WG1604-2	LCS	2334	EDB	02/10/03	02/10/03	02/10/03	0	0	0
%	WG1604-LCSD	WG1604-3	LCSD	2334	EDB	02/10/03	02/10/03	02/10/03	0	0	0
UG/L	0103-DUP-01	WT0233-007	NORMAL	2334	HG	01/31/03	02/11/03	02/11/03	11	0	11
UG/L	I8MW8-1-0103	WT0233-004	NORMAL	2334	HG	01/31/03	02/11/03	02/11/03	11	0	11
UG/L	I8MW8-2-0103	WT0233-005	NORMAL	2334	HG	01/31/03	02/11/03	02/11/03	11	0	11
UG/L	LABQC	PBWTB11HGW0	LCSD	2334	HG	02/27/03	02/11/03	02/11/03	-16	0	-16
UG/L	S1MW-7-0103	WT0233-006	NORMAL	2334	HG	01/31/03	02/11/03	02/11/03	11	0	11

Units	Nsample	Lab Id	<i>Qc Туре</i>	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
UG/L	S1SW-1-0103	WT0246-010	NORMAL	2334	HG	02/01/03	02/11/03	02/11/03	10	О	10
UG/L	S1SW-2-0103	WT0246-011	NORMAL	2334	HG	02/01/03	02/11/03	02/11/03	10	0	10
UG/L	S1SW-3-0103	WT0246-012	NORMAL	2334	HG	02/01/03	02/11/03	02/11/03	10	0	10
UG/L	0103-DUP-01	WT0233-007	NORMAL	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	FC-MW-05-0103	WT0233-003	NORMAL	2334	М	01/31/03	02/05/03	02/12/03	5	7	12
UG/L	FC-MW-06-0103	WT0233-001	NORMAL	2334	М	01/31/03	02/05/03	02/12/03	5	7	12
UG/L	FC-MW-20R-0103	WT0233-002	NORMAL	2334	М	01/31/03	02/05/03	02/12/03	5	7	12
UG/L	I8MW8-1-0103	WT0233-004	NORMAL	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	I8MW8-1-0103MS	WT0233-004S	MS	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	I8MW8-1-0103MSD	WT0233-004P	MSD	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	I8MW8-2-0103	WT0233-005	NORMAL	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	LABQC	PBWTB07ICW0	P BLANK	2334	М	02/07/03	02/07/03	02/10/03	0	3	3
UG/L	S1MW-7-0103	WT0233-006	NORMAL	2334	М	01/31/03	02/05/03	02/06/03	5	1	6
UG/L	S1SW-1-0103	WT0246-010	NORMAL	2334	М	02/01/03	02/07/03	02/11/03	6	4	10
UG/L	S1SW-2-0103	WT0246-011	NORMAL	2334	М	02/01/03	02/07/03	02/25/03	6	18	24
UG/L	S1SW-3-0103	WT0246-012	NORMAL	2334	М	02/01/03	02/07/03	02/13/03	6	6	12
UG/L	0103-DUP-01	WT0233-7	NORMAL	2334	os	01/31/03	02/05/03	03/04/03	5	27	32
UG/L	S1MW-7-0103	WT0233-6	NORMAL	2334	os	01/31/03	02/05/03	03/03/03	5	26	31
UG/L	S1SW-1-0103	WT0246-10	NORMAL	2334	os	02/01/03	02/05/03	03/04/03	4	27	31
UG/L	S1SW-2-0103	WT0246-11	NORMAL	2334	os	02/01/03	02/05/03	03/03/03	4	26	30
UG/L	WG1575-BLANK	WG1575-1	P BLANK	2334	os	02/04/03	02/05/03	03/03/03	1	26	27
UG/L	WG1575-LCS	WG1575-2	LCS	2334	os	02/04/03	02/05/03	03/04/03	1	27	28
UG/L	WG1575-LCSD	WG1575-3	LCSD	2334	os	02/04/03	02/05/03	03/05/03	1	28	29
UG/L	0103-DUP-01	WT0233-7	NORMAL	2334	ov	01/31/03	02/07/03	02/07/03	7	О	7
UG/L	0103-DUP-06	WT0246-8	NORMAL	2334	ov	02/01/03	02/07/03	02/07/03	6	0	6
UG/L	0103-DUP-06DL	WT0246-8DL	DL	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	FC-MW-05-0103	WT0233-3	NORMAL	2334	ov	01/31/03	02/06/03	02/06/03	6	0	6

Units	Nsample	Lab Id	Qc Туре	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
UG/L	FC-MW-06-0103	WT0233-1	NORMAL	2334	ov	01/31/03	02/07/03	02/07/03	7	О	7
UG/L	FC-MW-20R-0103	WT0233-2	NORMAL	2334	ov	01/31/03	02/06/03	02/06/03	6	0	6
UG/L	S1MW-5-0103	WT0246-9	NORMAL	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	S1MW-7-0103	WT0233-6	NORMAL	2334	ov	01/31/03	02/07/03	02/07/03	7	0	7
UG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	ov	02/03/03	02/07/03	02/07/03	4	0	4
UG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	ov	02/01/03	02/07/03	02/07/03	6	0	6
UG/L	S9MW-14-0103DL	WT0246-3DL	DL	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	ov	02/01/03	02/07/03	02/07/03	6	0	6
UG/L	S9MW-15-0103DL	WT0246-4DL	DL	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	ov	02/02/03	02/10/03	02/10/03	8	0	8
UG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	ov	02/02/03	02/07/03	02/07/03	5	0	5
UG/L	S9MW-22-0103DL	WT0246-13DL	DL ·	2334	ov	02/02/03	02/10/03	02/10/03	8	0	8
UG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	ov	02/02/03	02/07/03	02/07/03	5	0	5
UG/L	S9MW-24-0103DL	WT0246-6DL	DL	2334	ov	02/02/03	02/10/03	02/10/03	8	0	8
UG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	ov	02/02/03	02/07/03	02/07/03	5	0	5
UG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	ov	02/01/03	02/07/03	02/07/03	6	О	6
UG/L	S9MW-5-0103MS	WG1695-3	MS	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	S9MW-5-0103MSD	WG1695-4	MSD	2334	ov	02/01/03	02/10/03	02/10/03	9	0	9
UG/L	TB-013103	WT0233-8	NORMAL	2334	ov	01/21/03	02/07/03	02/07/03	17	0	17
UG/L	TB-020303	WT0246-14	NORMAL	2334	ov	01/21/03	02/07/03	02/07/03	17	О	17
UG/L	WG1669-BLANK	WG1669-1	P BLANK	2334	ov	02/05/03	02/05/03	02/05/03	0	0	0
UG/L	WG1669-LCS	WG1669-2	LCS	2334	ov	02/05/03	02/05/03	02/05/03	0	0	0
UG/L	WG1670-BLANK	WG1670-1	P BLANK	2334	ov	02/07/02	02/07/03	02/07/03	365	0	365
UG/L	WG1670-LCS	WG1670-2	LCS	2334	ov	02/07/02	02/07/03	02/07/03	365	0	365
UG/L	WG1691-BLANK	WG1691-1	P BLANK	2334	ov	02/07/03	02/07/03	02/07/03	0	0	0
UG/L	WG1691-LCS	WG1691-2	LCS	2334	ov	02/07/03	02/07/03	02/07/03	0	0	0
UG/L	WG1695-BLANK	WG1695-1	P BLANK	2334	ov	02/10/03	02/10/03	02/10/03	0	О	0

Units	Nsample	Lab Id	Qc Type	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
UG/L	WG1695-LCS	WG1695-2	LCS	2334	ov	02/10/03	02/10/03	02/10/03	0	0	0
UG/L	0103-DUP-01	WT0233-7	NORMAL	2334	PEST	01/31/03	02/04/03	02/20/03	4	16	20
UG/L	S1MW-7-0103	WT0233-6	NORMAL	2334	PEST	01/31/03	02/04/03	02/20/03	4	16	20
UG/L	S1SW-2-0103	WT0246-11	NORMAL	2334	PEST	02/01/03	02/07/03	02/20/03	6	13	19
UG/L	WG1560-BLANK	WG1560-1	P BLANK	2334	PEST	02/03/03	02/04/03	02/20/03	1	16	17
UG/L	WG1560-LCS	WG1560-2	LCS	2334	PEST	02/03/03	02/04/03	02/20/03	1	16	17
UG/L	WG1560-LCSD	WG1560-3	LCSD	2334	PEST	02/03/03	02/04/03	02/20/03	1	16	17
UG/L	WG1590-BLANK	WG1590-1	P BLANK	2334	PEST	02/06/03	02/07/03	02/17/03	1	10	11
UG/L	WG1590-LCS	WG1590-2	LCS	2334	PEST	02/06/03	02/07/03	02/17/03	1	10	11
%	FC-MW-05-0103	WT0233-3	NORMAL	2334	SIM	01/31/03	02/04/03	02/28/03	4	24	28
%	FC-MW-05-0103RA	WT0233-3RA	NORMAL	2334	SIM	01/31/03	02/04/03	02/28/03	4	24	28
%	FC-MW-06-0103	WT0233-1	NORMAL	2334	SIM	01/31/03	02/04/03	02/28/03	4	24	28
%	FC-MW-20R-0103	WT0233-2	NORMAL	2334	SIM	01/31/03	02/04/03	03/05/03	4	29	33
%	WG1567-BLANK	WG1567-1	P BLANK	2334	SIM	02/04/03	02/04/03	02/28/03	0	24	24
%	WG1567-LCS	WG1567-2	LCS	2334	SIM	02/04/03	02/04/03	02/28/03	0	24	24
%	WG1567-LCSD	WG1567-3	LCSD	2334	SIM	02/04/03	02/04/03	02/28/03	0	24	. 24
MG/L	0103-DUP-06	WT0246-8	NORMAL	2334	SO4	02/01/03	02/28/03	02/28/03	27	0	27
MG/L	0103-DUP-06DUP	WT0246-8 DUP	DUPLICATE	2334	SO4	02/01/03	02/28/03	02/28/03	27	0	27
MG/L	LABQC	MBLANK	P BLANK	2334	SO4	02/28/03	02/28/03	02/28/03	0	0	. 0
MG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	SO4	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-12-0103DUP	WT0246-2 DUP	DUPLICATE	2334	SO4	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-12-0103MS	WT0246-2 MS	MS	2334	SO4	02/03/03	02/27/03	02/27/03	24	0	24
MG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	SO4	02/01/03	02/27/03	02/27/03	26	О	26
MG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	SO4	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	SO4	02/02/03	02/27/03	02/27/03	25	0	25
MG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	SO4	02/02/03	02/28/03	02/28/03	26	0	26
MG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	SO4	02/02/03	02/28/03	02/28/03	26	0	26

Units	Nsample	Lab Id	Qc Type	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
MG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	SO4	02/02/03	02/28/03	02/28/03	26	0	26
MG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	SO4	02/01/03	02/27/03	02/27/03	26	0	26
MG/L	0103-DUP-06	WT0246-8	NORMAL	2334	SUL	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	LABQC	MBLANK	LCSD	2334	SUL	02/06/03	02/06/03	02/06/03	0	0	0
MG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	SUL	02/03/03	02/06/03	02/06/03	3	0	3
MG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	SUL	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	SUL	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	SUL	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	SUL	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	SUL	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	SUL	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-5-0103	WT0246-1	NORMAL	2334	SUL	02/01/03	02/06/03	02/06/03	5	. 0	5
MG/L	0103-DUP-06	WT0246-8	NORMAL	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	0103-DUP-06MS	WT0246-8 MS	MS	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	LABQC	MBLANK	P BLANK	2334	тос	02/28/03	02/06/03	02/06/03	-22	0	-22
MG/L	S9MW-12-0103	WT0246-2	NORMAL	2334	тос	02/03/03	02/06/03	02/06/03	3	0	3
MG/L	S9MW-14-0103	WT0246-3	NORMAL	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	S9MW-15-0103	WT0246-4	NORMAL	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
MG/L	S9MW-21-0103	WT0246-5	NORMAL	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-22-0103	WT0246-13	NORMAL	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-24-0103	WT0246-6	NORMAL	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-25-0103	WT0246-7	NORMAL	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-25-0103DUP	WT0246-7 DUP	DUPLICATE	2334	тос	02/02/03	02/06/03	02/06/03	4	0	4
MG/L	S9MW-5-0103	WT0246-1	NORMAL.	2334	тос	02/01/03	02/06/03	02/06/03	5	0	5
UG/L	FC-MW-05-0103	WT0233-3	NORMAL	2334	TPH	01/31/03	02/06/03	02/19/03	6	13	19
UG/L	FC-MW-06-0103	WT0233-1	NORMAL	2334	TPH	01/31/03	02/06/03	02/19/03	6	13	19
UG/L	FC-MW-20R-0103	WT0233-2	NORMAL	2334	TPH	01/31/03	02/06/03	02/20/03	6	14	20

Units	Nsample	Lab Id	Qc Type	Sdg	Sort	Samp Date	Extr Date	Anal Date	SAMP_DATE TO EXTR_DATE	EXTR_DATE TO ANAL_DATE	SAMP_DATE TO ANAL_DATE
UG/L	WG1582-BLANK	WG1582-1	P BLANK	2334	TPH	02/05/03	02/06/03	02/19/03	1	13	14
UG/L	WG1582-LCS	WG1582-2	LCS	2334	TPH	02/05/03	02/06/03	02/19/03	1	13	14
UG/L	WG1582-LCSD	WG1582-3	LCSD	2334	TPH	02/05/03	02/06/03	02/19/03	1	13	14

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE NAF KEY WEST CTO 233 TASK ORDER MANAGER: CHARLES BRYAN CTO233-4

Sample Receipt

The following samples were received on February 1 and 4, 2003 and were logged in under Katahdin Analytical Services work order numbers WT0233 and WT0246 for a hardcopy due date of March 4, 2003.

KATAHDIN	TTNUS
Sample No.	Sample Identification
WT0233-1	FC-MW-06-0103
WT0233-2	FC-MW-20R-0103
WT0233-3	FC-MW-05-0103
WT0233-4	I8MW8-1-0103
WT0233-5	I8MW8-2-0103
WT0233-6	S1MW-7-0103
WT0233-7	0103-DUP-01
WT0233-8	TB-013103
WT0246-1	S9MW-5-0103
WT0246-2	S9MW-12-0103
WT0246-3	S9MW-14-0103
WT0246-4	S9MW-15-0103
WT0246-5	S9MW-21-0103
WT0246-6	S9MW-24-0103
WT0246-7	S9MW-25-0103
WT0246-8	0103-DUP-06
WT0246-9	S1MW-5-0103
WT0246-10	S1SW-1-0103
WT0246-11	S1SW-2-0103
WT0246-12	S1SW-3-0103
WT0246-13	S9MW-22-0103
WT0246-14	TB-020303

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, **Andrea J. Colby**. This narrative is an integral part of the Report of Analysis.

00000002

Organics Laboratory

Samples WT0233-1 through -8 were received on February 1, 2003. Samples WT0246-1 through -14 were received on February 4, 2003. Some of the samples were analyzed for pesticides according to SW846 8081A and/or petroleum range organics (PRO) according to Florida DEP FL-PRO, and/or Ethylene dibromide (EDB) according to method EPA 504.1 and/or Volatile Organics according to EPA SW-846 8260B and/or semivolatiles according to SW846 method 8270C (Appendix IX) and/or PAHs using SIM analysis in order to achieve lower detection limits. The samples were extracted and analyzed within holding time, and all QC criteria were acceptable with the following comments:

8081 Analysis

The laboratory control sample (LCS) WG1590-2 had low recoveries for the extraction surrogate DCB on both channels. Since the recoveries for TCX were acceptable, no corrective action was taken.

The closing calibration verification standard (CV) (files 8TB1232 and 8TB2232) had high responses for seven analytes on channel A and six analytes on channel B. These responses resulted in %D's that were outside the method limit of 15%. The associated samples may be biased accordingly for the aforementioned analytes.

The closing CV (files 8TB3070 and 8TB4070) had high responses for Endrin ketone on both channels, as well as high responses for beta-BHC and 4,4'-DDD on channel A. All of these responses resulted in %D's that were outside of the method acceptance limit of 15%. Since these responses would indicate a high biased and the samples did not detect any analytes above the MDL, the sample data quality should not be affected.

The opening CV (file 8TB4084) had a low response for delta-BHC on channel B, which resulted in %D's that were outside the method acceptance limit of 15%. The associated samples may be biased low for delta-BHC on channel B.

All samples and the associated QC were put through a sulfur cleanup according to SW846 method 3660 using the copper powder technique.

PRO Analysis

Sample WT0233-2 was diluted in order to bring the high PRO concentration into the calibration range.

504.1 Analysis

The closing CV (file 3TB1027) had a high response for the surrogate TCMX, which resulted in a %D that was outside of the method acceptance limit of 30%. The associated samples may be biased high for the surrogate on both channels.

8260 Analysis

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) and Matrix spike samples (MS/MSD's) are statistically derived. Katahdin standard operating procedure is to not take corrective action until greater than ten percent of the spiked analytes in the LCS are outside of QC limits.

The calibration method analyzed for Appendix Nine analytes for these work orders had several analytes with %RSD values exceeding the method acceptance limit of 15%. For those analytes, either a linear or quadratic model was used for quantitation. The following four analytes failed for both the linear and quadratic models in the initial calibration, Iodomethane, Acetonitrile, Carbon tetrachloride, and 1,4-Dioxane. These four compounds were calibrated using the quadratic model. Since these analytes were not detected above the MDL for any of the associated samples and all other QC criteria was met, the associated samples were not reanalyzed. Bromomethane failed for both the linear and quadratic models in the 8260 initial calibration. This compound was calibrated using the quadratic model. Since this analyte was not detected above the MDL for any of the associated samples and all other QC criteria was met, the associated samples were not reanalyzed.

Some manual integrations were performed due to split peaks and corrected baselines. All have been flagged with a "M" (software-generated) on the pertinent quantitation reports.

The matrix spike sample WG1695-3 and matrix spike duplicate sample WG1695-4 had low and/or high recoveries for several analytes. The %RPD's between WG1695-3 and WG1695-4 for these analytes were outside of the acceptance limit of 20%. These deviations are likely due to the matrix of the sample.

Samples WT0246-3, -4, -6, -8, and -13 were reanalyzed at a dilution in order to bring one or more target analytes into the calibration range.

8270 Analysis

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) and Matrix spike samples (MS/MSD's) are statistically derived. Katahdin standard operating procedure is to not take corrective action until greater than ten percent of the spiked analytes in the LCS are outside of QC limits.

In the Appendix IX calibration curve analyzed for these workorders, there were eight Appendix IX analytes and two 8270 analytes that had %RSD values exceeding the method acceptance criteria of 15%. The calibration curve for SIM analysis of PAHs was compliant.

Some manual integrations were performed due to split peaks and/or corrected baselines. All have been flagged with an "M" (software generated) on the pertinent quantitation reports.

Sample WT0233-2 was diluted 1:250 in order to bring one or more high concentration target analytes into the calibration range. Consequently, the extraction surrogates were diluted out of range.

Sample WT0233-3 was analyzed twice due to high recoveries for the internal surrogates. The reanalysis also had a high internal surrogate confirming a matrix effect. The results for both analyses are reported.

Sample WT0246-11 had a low recovery for the extraction surrogate 2-Fluorophenol, which was outside of the laboratory established acceptance limits. Since the other surrogates were acceptable the sample was not reanalyzed.

There were no other protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples of Katahdin SDG CTO233-4 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Aqueous Waste", SW-846, November 1986, Third Edition.

Inductively-Coupled Plasma Atomic Emission Spectroscopic Analysis (ICP)

Aqueous-matrix Katahdin Sample Nos. WT0233-(1-7) were digested for ICP analysis on 02/05/03 (QC Batch TB05ICW1) in accordance with USEPA Method 3010A. Katahdin Sample No. WT0233-4 was prepared with duplicate matrix-spiked aliquots.

Aqueous-matrix Katahdin Sample Nos. WT0246-(10-12) were digested for ICP analysis on 02/07/03 (QC Batch TB07ICW0) in accordance with USEPA Method 3010A. Duplicate laboratory control samples were prepared in this batch.

ICP analyses of SDG CTO233-4 sample digestates were performed using a Thermo Jarrell Ash (TJA) Trace ICP spectrometer and a TJA 61E ICP spectrometer. All samples were analyzed within holding times and all analytical run QC criteria were met, with the following comments or exceptions:

Some of the results for run QC samples (ICV, ICB, CCV, CCB, ICSA, and ICSAB) included in the accompanying data package may have exceeded acceptance limits for some elements. Please note that all client samples and batch QC samples associated with out-of-control results for run QC samples were subsequently reanalyzed for the analytes in question.

Several samples required dilution prior to analysis due to matrix interference.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Aqueous-matrix Katahdin Sample Nos. WT0233-(4-7) and WT0246-(10-12) were digested for mercury analysis on 02/11/03 (QC Batch TB11HGW0) in accordance with USEPA Method 7470A. Duplicate laboratory control samples were prepared in this batch.

Mercury analyses of Katahdin SDG CTO233-4 sample digestates were performed using a Leeman Labs PS200 automated mercury analyzer. All samples were analyzed within holding times and all analytical run QC criteria were met.

Matrix QC Summary

Element recoveries for both of the matrix-spiked aliquots of Katahdin Sample No.WT0233-4 were within the laboratory's matrix spike recovery acceptance criteria (75% - 125% recovery of the added element, if the native concentration is less than four times the amount added) for all analytes except selenium.

0000005

The matrix-spike duplicate precision analysis of Katahdin Sample No. WT0233-4 was within the laboratory's acceptance limit (<20% relative percent difference between duplicate matrix-spiked aliquots) for all analytes.

The serial dilution analysis of Katahdin Sample No. WT0233-4 was within the laboratory's acceptance limit (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the IDL) for all analytes.

Wet Chemistry Analysis

Samples were received on February 4, 2003 and logged in as work order WT0246. Analyses for Total Organic Carbon, and Sulfide were performed according to "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, 1979, Revised 1983. Analyses for Chloride and Sulfate were performed according to U.S. EPA "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA 600/R-93/100, August 1993.

All analyses were performed within analytical hold time. All quality control criteria were met.

No other deviations were noted by the Wet Chemistry group.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Operations Manager or the Quality Assurance Officer as verified by the following signature.

Maria Crouch

Quality Assurance Officer

0000006

CHAIN OF CUSTODY

3844 NUMBER

PAGE OF

PROJECT NO: FACILITY: CTOG 207+233 NAF Key U SAMPLERS (SIGNATURE)	lest	Chi	r cle_	NAGER Ponja	n	PH St	ONE NU うろ~64 ONE NU	MBER 9-7	963		An	dvee	NAME A	ND CO	NTA	ct: ntahd	in.
SAMPLERS (SIGNATURE)					EADER					. / A	DDRES	S		,			
En Olika				1 cles	レ UMBER		505-2	116-	882	4	<u> </u>	/ <u>(</u> 0 (inty	Fd.	. 1	10.5	
Agluy Lyundo		Fede			0 01	119	276	12-			Me	Hou	ook	ME	2		
Shade Card. Sunts		701-				<i>' </i>	CONT	AINER 1	YPE or GLAS	S (G)		6/6			G/	PI	2/6/6
STANDARD TAT A				, ac,				ERVATI	•		/	W.			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	7,27	
24 hr. 48 hr. 72 hr. 7 day	14 day			, SD,	٥					/-			\sim			-\$/-	/ 15/
2003	OCATION ID	гор бертн (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, ETC.)	ECTION METHOD (G)	CONTAINERS	ME	FHALE					W. I.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5/5	10/2007 10/2007	JUL 2
TEAT SAMPLE ID	LOCAT	TOP DE	вотто	MATRI) ETC.)	COLLEC GRAP (COMP (No. OF		37/1	3/5	2× 2	**/-	Surg X	KY V	202	Ŋ	X COM	MENTS
1/31 0845 FC-MW-06-0103	MW-6			6W	G	10	X	X	X	Х	X				Ιí	Cto Zo	07
1/31 0857 FC-MW-20R-0103	MW-20	R -		GW	6	10	X	χ	_X	X	_X					002	07
1/31 1010 FC-MW-05-0103	MW-5	_		GW	6	10	X	X	X	×	X					002	07
1/31 1225 IBMWB-1-0103	MW-B			6W	6	Ĺ					/	X	_			C10 2	.33
1/31 1125 JOHN 8-2-0103	MW-2		_	6W	6	1						X				UO 2	33
1/31 1427 SIMW-7-0103	NW-7		_	600	6	8						X	X	X	X	Cto '	233
1/31 - 0103-DUP-01				GW	6	8		,				X	×	×	X	CTO	-
1/31 1520 SISD-5-0103	40-5		-	40	6	2						X		X			233
1/31 1535 5150 -2 -0103	60-2		_	SD	6	2						X		X	6	CTO :	233
1/21 TB-013103		•		QC	_	2								X			
				1													
																1	
1. RELINOUISHED BY		DATE 1/3/	102	T	IME 1730	1. R	ECEIVE	BY	·	(Na.	/		.L	DA	TE		TIME 10130
2. RELINOUISHED BY		DATE	100	T	IME	2. R	ECEIVE!	BY	car	xx49			-	DA	TE	_ در	TIME
3. RELINQUISHED BY		DATE		T	IME	3. R	ECEIVE	D BY						DA	ATE		TIME
COMMENTS		1 .					·····										
DISTRIBUTION: WHITE (ACCOMPANIES S	AMPLE)			YELLO	W (FIELD	COPY)	····		PIN	K (FILE	COPY)				<u> </u>	4/02R

0000012

CHAIN OF CUSTODY

| NUMBER 3843

PAGE OF 2

PROJECT NO: FACILITY: NATE KW		PROJE	CT MA	NAGER	LEADER 2_ IUMBER	PH Ø	ONE NU	IMBER 19-7 IMBER	962) L	ABORA Kaut	TORY	NAME A	ND COL	NTACT: vea	Tolky.
SAMPLERS (SIGNATURE)		FIELD	OPER/	TONS	LEADER	PH	ONE N	MBER		, ,	IDDRES	S		•		i
SAMPLERS (SIGNATURE) SAMPLERS (SIGNATURE)		Em	aly 1	Ilche	<u>ا</u>	30	5-2	16-8	185°	7	340	Co	myth	x Kd	No.	>
ay mora		CARRI	ER/JVA	YBILL	UMBER		4.1				CITY. ST	ATE	1	Ü	٨	
			83	70	0119	87		AINITO 1	rvo:		Mes	1600	ok.	14/5	0701	
								AINER TIC (P)		SS (G)		6/	9/1	2/E	/6	/wy 6/C
STANDARD TAT RUSH TAT □				Ö,				ERVATI			75/	48Y	///	DX/		
	14 day			o o			USED			/4	×/v	Tu X	' /≷	2°		
DATE 2003 BMIL A003 DI BIANNES	LOCATION ID	тор DEPTH (FT)	ВОТТОМ DEPTH (FT)	MATRIX (GW, SO, SW, SD, ETC.)	COLLECTION METHOD GRAP (G) COMP (C)	No. OF CONTAINERS	TIPE	OF HALLY			ou ,	Red A	/	/	, ,	COMMENTS
21 0937 SANK-5-0103	NW-5			GW	G	7	3	1	1	2						
2/3 0836 S9MW-12-0103	NW-12			6W	6	7	3	١	1	2						
2/1 1550 S9MW-14-0103	MW-14			GW	6	7	3	1	١	2						
2/1 1515 SANW-15-0103	MW-15	_		6W		7	3		1	2						
2/2 1440 S9MW-21-0603	MW-21		-	6 W	9	7	3	1	1	2						
2/3 1420 S94W-22-0103	MW-Z	2 -		GW		7	3	1	1	2						
2/2 0920 S9MW-24-0103	MW-2		-	GW		7	3	1	i	2						
2/2 1005 SQUIN-25-0103	MW-29	1.		GW		7	3	1	1	2				8		
2/0 - 0103- DUP-06			—	6W	1.1	7	3	1	1	2						
2/1 1205 SIMW-5-0103	UW-5			·GW		3	1				3					
2/1 094251SD-1-0103	40-1			5D	6	3						1	1	1		
2/1 094251510-1-0103-MS			-	50		3					1	1	ı	1		
			_	50		3						1	 	1		
2/1 0942 SISD-1-0103-MS 1. RELINGUISHED BY		DATE 2/	100		TIME	1. R	ECEIVE	D DY	/	U	7	<u>-l</u>		T DA	4-63	TIME 0415
2. RELINQUISHED BY		DATE	<i>5 </i> 0		IS CO	2. R	EREIVE	D BY		~					TE	TIME
3. RELINQUISHED BY		DATE			TIME		ECEIVE								TE	TIME
		DAIL				3.10									···-	
COMMENTS																

(くく) こん

TETRA TECH NUS, INC.

CHAIN OF CUSTODY

NUMBER

3842

PAGE 2 OF 2

PROJ	ECT NO:	FACILITY:		PROJECT MANAGER PHONE NUMBER LABORATORY NAM									NAME A	AND COI	NTACT:	,		
SAMP	LERS (SIC	GNATURE)		FIELD	OPER/	ATIONS	LEADER	Р	HONE N	UMBER		A	DDRES	S				
				CARR	IER/WA	YBILL N	NUMBER					С	ITY, ST	ATE				
RUSH	DARD TA	T X 48 hr. □ 72 hr. □ 7 day	□ 14 day			SD, QC,			PLAS PRES USED		or GLAS	ss (G)	New York	200				
DATE 2003	TIME	SAMPLE ID	LOCATION ID TOP DEPTH (FT) MATRIX (GW, SO, SW, ETC.) COLLECTION METHOD GRAP (G) COMP (C) No. OF CONTAINERS												COMMENTS			
2/1	_	0103-DUP-02				50	6	3)	1	J							
41	0924	6150-2-0103				50	6	2	1	ļ .	1							
2/1	1020	5150-3-0103	50-3		-	50	6	2	1,	ļ	1					ļ		
41	6942	SISW-1-0103	5W-1			SW	G	7	4 3	192	ļ							
71	0924	515W-2-0103	5W-2		+	SW	6	5		2	2							
4	1020	616W-3-0103	5w-3	_	 -	SW	G	_1_							ļ			
1/21		TB-010303			-	QC	. —	2				2						
	-		·															
																		TIME
	LINQUISH			DATE		1	TIME	1.	RECEIVE	ED BA	Bec	mell.	10	<u></u>			型c3	TIME 0915
2. RE	LINQUISH	HED BY		DATE			TIME	2.	RECEIVE	BY							TE	TĪMĒ
3. RE	LINQUISH	IED BY		DATE		1	TIME	3.	RECEIVE	D BY						DA	TE	TIME
СОМ	MENTS																	

DISTRIBUTION:

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: SB657

BFB Injection Date: 11/21/02

Instrument ID: GCMS-S

BFB Injection Time: 0710

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		=========
50	15.0 - 40.0% of mass 95	17.8
75	30.0 - 60.0% of mass 95	46.7
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.2
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Greater than 50.0% of mass 95	70.8
175	4.0 - 9.0% of mass 174	6.0 (8.4)1
176	95.0 - 101.0% of mass 174	70.2 (99.1)1
177	5.0 - 9.0% of mass 176	4.4 (6.2)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

- 1	CLIENT	LAB	LAB	DATE	TIME
1	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
]	=======================================	=======================================	========		=======================================
01		VSTD050S21A	S5031	11/21/02	0741
02		VSTD020S21A	S5032	11/21/02	0814
03		VSTD010S21A	S5033	11/21/02	0847
04		VSTD005S21A	S5034	11/21/02	0920
05		VSTD200S21A	S5035	11/21/02	0953
06		VSTD100S21A	S5036	11/21/02	1026
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18			I		
19					
20					
21					
22					
page	1 of 1		,	•	-

FORM V VOA

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-S

Calibration Date(s): 11/21/02 11/21/02

Column: RTX-VMS ID: 0.18 (mm) Calibration Time(s): 0741

1026

LAB FILE ID:

RF5: S5034

RF10: S5033

RF20: S5032

RF50: S5031

RF100: S5036

RF200: S5035

1	1				·								- .
COMPOUND	l RFS !		RF20	RF50	 ======	[! =====	1	•	COEFFICEN:		*RSD	MAX %RS	•
	•				RF100	•	CURVE		A1	A2	OR R^2	OR R^2	: 1
Dichlorodifluoromethane	0.771	,,					•	======	= =======	-	= ==================================	•	•
Chloromethane	0.7/1		1.081				•	ļ	_ 0.71524	!		15.000	
Vinyl chloride	0.867							!	_ 1.03143			15.000	
Bromomethane	6495	•	18206				•	1	_ 0.79768			15.000	•
Chloroethane	0.446	•				292740		7e-002	2.36512			0.99000	•
Trichlorofluoromethane	0.818	•	0.829				•	!	_ 0.44879	!	- :	15.000	•
1,1-Dichloroethene	0.571		-				AVRG		0.82521	!		15.000	•
Carbon Disulfide	2.091	•					AVRG	!	_ 0.56517	!	- , · · ·	15.000	
Iodomethane	9410		9670				•	1	2.06122	I	_ 5.227		•
Acrolein	0.035	•	0.0301					0.21395	11.80249	-7e-002			
Methylene Chloride	0.849	,	0.7391				•	!	3e-002	<u>!</u>	_ 9.667	•	•
Acetone	4757	•		- •			AVRG		[0.74403	l		15.000	
Isobutyl Alcohol	8602 i	•	247991		123220			•	15.2732	!	_ 0.99428	•	-
trans-1,2-Dichloroethene	0.672	•	0.648		•			11.06246	36.2503	!	_ 0.99885	•	•
Allyl Chloride	0.772	•	0.714		-		•	!	0.64267	<u> </u>	_ 3.867	•	•
Acetonitrile	1156	•	60991		•			I	0.78531	1	_ 13.739		-
Chloroprene	0.905	•	0.714	•	•			0.46135	•	199.5198	0.98827	•	•
Methacrylonitrile	0.254	•	0.224	•				!	0.84807	!		15.000	•
Propionitrile	0.042	,	0.224	0.057					10.25403	1		15.000	
1,1-Dichloroethane	1.266	•	1.149						5e-002	!		15.000	
Acrylonitrile	0.115	•	0.107	•		1.141			1.19552	ļ	5.444	•	•
Vinyl Acetate	13235		39463	•	327960	0.125			0.12081	!	12.669	•	•
cis-1,2-Dichloroethene	0.7231		0.707]	0.723		686730 0.668		0.12656	1.50705	ļ	0.99682	•	•
1,2-Dichloroethylene (total)	•		1.355	1.376	1.269	1.280			0.69342	!	4.133	•	•
Methyl Methacrylate	0.196		0.194	0.2391	0.227	0.235			1.33609	!	3.841	•	•
Chloroform	1.099		1.123	1.178	1.066	1.088	•			l	9.031	'	!
Carbon Tetrachloride	12172	•	18948	•	2464501		•	0.35435	1.11080	1	3.430	•	!
1,1,1-Trichloroethane	0.924	0.798	0.773	0.8491	0.814	0.834		0.15435		1-0.2128	0.98748	•	•
2-Butanone	0.052	0.052	0.042	0.0601			•		0.83231	ļ	•	15.000	•
Benzene	1.734	1.706	1.684	1.777	1.551	0.061			5e-002	ļ	13.899	•	•
Ethyl Methacrylate	0.321	0.364	0.3291	0.4251	0.391	0.421			11.67781	ļ		15.000	•
1,2-Dichloroethane	0.476	0.452	0.4121	0.4851	0.455	0.475	•		0.37520	!	11.951	•	•
Trichloroethene	0.437	0.412	0.465	0.435	0.433	0.385			0.45934	1		15.000	!
Dibromomethane	56761	70991	13826	51311					0.41771	ł	8.238	•	1
1,2-Dichloropropane	0.434	0.423	0.420	0.462	0.3981	0.421	•		4.59464	l	0.99861	•	1
Bromodichloromethane	0.539	0.481	0.371	0.459	0.501	0.421	•		0.42633	 :	4.910	•	1
cis-1,3-dichloropropene	17313	35225	32454	153850	•		•		0.47936	I	12.593	•	!
1,4-Dioxane	3109	4810	8551	23626	31707	697290	-		1.47966	l	0.99677		1
2-Chloroethylvinylether	3891	4010 835	1120	5366	•	_			1207.97	j-5791.6	•	•	< -
Toluene	0.992	0.926		•	10850	19847			51.8520	l	0.99747		1
4-methyl-2-pentanone	•		0.964	0.982	0.898[0.930	•		0.94883	<u> </u>		15.000	1
Tetrachloroethene	0.209	0.220	0.191	0.257	0.231	0.236			0.22395	! <u>-</u> -	10.248	•	1
trans-1,3-Dichloropropene	0.266	0.346	0.348	0.358	0.327	0.334	•		0.32979		10.083	•	•
1,1,2-Trichloroethane	11975	27300	32310	122600	282080	548620	•		1.89072		0.99790	•	•
	0.247	0.249	0.236	0.254	0.246	0.254	AVRG		0.24773		2.670	15.000	i
I						1	1.	!	ll		l	l <u></u> _	.1

FORM VI VOA

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-S

Calibration Date(s): 11/21/02 11/21/02

Column: RTX-VMS ID: 0.18 (mm) Calibration Time(s): 0741 1026

LAB FILE ID: RF5: S5034

RF20: S5032

RF50: S5031 RF100: S5036 RF200: S5035

RF10: S5033

1	l	1	1	j l		t	COEFFICENTS	*RSD	MAX %RSD
COMPOUND	RF5	RF10	RF20	RF50	RF100	RF200 CURVE	A0 A1 A	2 OR R^2	OR R^2
Dibromochloromethane	0.4	5 0.405	0.278	0.364	0.423	0.424 AVRG	0.38332	14.542	15.000
1,2-Dibromoethane	0.2	9 0.272	0.240	0.291	0.290	0.296 AVRG	0.27799	7.460	15.000
2-Hexanone	0.2	0.236	0.195	0.222	0.251	0.252 AVRG	0.22936	9.351	15.000
Chlorobenzene	1.3	.1 1.263	1.242	1.302	1.174	1.188 AVRG	1.24652	4.562	15.000
Ethylbenzene	2.0	4 2.077	2.005	2.105	1.925	1.956 AVRG	2.01535	3.414	15.000
1,1,1,2-Tetrachloroethane	0.4	9 0.450	0.433	0.463	0.438	0.444 AVRG	0.44633	2.333	15.000
Xylenes (total)	2.2	9 2.252	2.252	2.368	2.157	2.140 AVRG	2.23277	3.663	15.000
m+p-Xylenes	0.7	5] 0.753	0.768	0.797	0.715	0.711 AVRG	0.75157	4.385	15.000
o-Xylene	0.6	9 0.745	0.716	0.774	0.727	0.717 AVRG	0.72964	3.642	15.000
Styrene] 1.19	5 1.250	1.207	1.320	1.262	1.276 AVRG	1.25163	3.680	15.000
Bromoform	0.2	.8 0.211	0.196	0.236	0.248	0.241 AVRG	0.22495	8.905	15.000
trans-1,4-Dichloro-2-Butene_	0.2	8 0.262	0.219	0.233	0.265	0.260 AVRG	0.24649	7.677	15.000
1,1,2,2-Tetrachloroethane	1 0.9	3 ⊹0.992	0.870	0.860	0.927	0.897 AVRG	0.90823	5.250	15.000
1,2,3-Trichloropropane	1.13	8 1.318	1.027	1.140	1.207	1.115 AVRG	1.15739	8.449	15.000
Pentachloroethane	0.8	1.040	0.869	0.874	0.793	0.794 AVRG	0.87355	10.303	15.000
[1,2-Dibromo-3-Chloropropane_	0.3	0.305	0.246	0.262	0.285	0.262 AVRG	0.27665	8.534	15.000
						====== =====			
Dibromofluoromethane	0.6	5 0.623	0.603	0.536	0.632	0.618 AVRG	0.60286	5.752	15.000
1,2-Dichloroethane-D4	0.5	1 0.594	0.534	0.495	0.628	0.592 AVRG	0.56889	8.362	15.000
Toluene-D8	1.2	1 1.335	1.320	1.118	1.258	1.254 AVRG	1.25916	6.094	15.000
P-Bromofluorobenzene	0.4	1 0.538	0.497	0.433	0.493	0.498 AVRG	0.49005	6.920	15.000
l	1	_1	l	ll	1	l	l <u>l</u>	l	

Average %RSD test result. | Calculate Average %RSD: 7.295575619 | Maximum Average %RSD: 15.00000000 Note: Passes Average %RSD Test.

FORM VI VOA

INITIAL CALIBRATION DATA

Start Cal Date : 21-NOV-2002 07:41 End Cal Date : 21-NOV-2002 10:26

Quant Method : ISTD Target Version : 4.12 Integrator : HP RTE

Method file : \chem\gcms-s.i\s112102.b\8260APIX.m : 05-Mar-2003 08:59 bgosselin

Cal Date

Global Auto Calibration Mode = TEST AVG. %RSD BEFORE AUTO CALIBRATION

Calibration File Names:
Level 1: \chem\gcms-s.i\s112102.b\S5034.D
Level 2: \chem\gcms-s.i\s112102.b\S5033.D
Level 3: \chem\gcms-s.i\s112102.b\S5032.D
Level 4: \chem\gcms-s.i\s112102.b\S5031.D
Level 5: \chem\gcms-s.i\s112102.b\S5036.D
Level 6: \chem\gcms-s.i\s112102.b\S5035.D

ľ	Compound	5.0000 Level 1	10.0000	20.0000	50.0000	100.0000	200.0000	Old	New	Crv	WtFactr	Co	efficients	-	%RSD	Max %RSD
i		TGAGT T	Level 2	Level 3	Level 4	Level 5		Crv	:			b	ml	m2	or R^2	or R^2
Katahdin Anal	1 Dichlorodifluoromethane 2 Chloromethane 3 Vinyl chloride 4 Bromomethane 5 Chloroethane 6 Trichlorofluoromethane 9 1,1-Dichloroethene	0.77105 0.94726 0.86676 6495 0.44551 0.81771 0.57069	0.82912 11901 0.48184 0.85059	1.08059 0.81325 18206	0.50143 0.86670	0.96787 0.72759 139344 0.38952 0.78613	0.66557 0.99102 0.72276	AVG AVG AVG LNR AVG AVG	AVG AVG AVG AVG AVG	A/N A/N A/N ON A/N	A/N A/N A/N A/N A/N	0.07063	0.71524 1.03143 0.79768 0.42281 0.44879 0.82521 0.56517		6.00035 6.87884 7.38779 0.99805 9.94992 3.64484	15.00000 15.00000 15.00000 0.99000 15.00000
	14 Methylene Chloride 17 trans-1,2-Dichloroethene 26 1,1-Dichloroethane 35 Chloroform 39 1,1,1-Trichloroethane	0.84921 0.67204 1.26573 1.09868 0.92444	0.76109 0.65835 1.18254 1.11129 0.79812	0.73912 0.64840 1.14868 1.12268 0.77322	0.65266 1.28810 1.17764	0.68320 0.61350 1.14705 1.06608 0.81449	0.67709 0.61109 1.14102 1.08839	AVG AVG AVG AVG	AVG AVG AVG AVG	N\A A/K A/K A/K	A/N A/N A/N A/N		0.74403 0.64267 1.19552 1.11080 0.83231	 	8.42967 3.86728 5.44441 3.43006	15.00000 15.00000 15.00000 15.00000 15.00000

INITIAL CALIBRATION DATA

Start Cal Date : 21-NOV-2002 07:41 End Cal Date : 21-NOV-2002 10:26

Quant Method : ISTD
Target Version : 4.12
Integrator : HP RTE
Method file : \chem\gcms-s.i\s112102.b\8260APIX.m
Cal Date : 05-Mar-2003 08:59 bgosselin

Global Auto Calibration Mode = TEST AVG. %RSD BEFORE AUTO CALIBRATION

1		5.0000	10.0000	20.0000	50.0000	100.0000	200,0000	Old Nev	w Crv	WtFactr	Co	efficients		%RSD	Max %RSD
1	Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv Crv	v Org		b	m1	m2	or R^2	or R^2
=:						*******		=== ===	= = = =]=======	
l	49 1,2-Dichloroethane	0.47575	0.45223	0.41230	0.48533	0.45513	0.47531	AVG AVC	G N\A	M\A	1	0.45934		5.74434	15.00000
1	36 Carbon Tetrachloride	12172	17159	18948	62662	246453	495461	QUA QUA	A NO	A/N	0.15435	2.43262	-0.21281	0.98748	0.99000
	42 Benzene	1.73435	1.70646	1.68350	1.77738	1.55137	1.61378	AVG AVC	3 N/A	N\A	1	1.67781		4.91863	15.00000
1	53 1,2-Dichloropropane	0.43410	0.42267	0.42047	0.46183	0.39820	0.42071	AVG AVC	3 N/A	N\A		0.42633		4.91049	15.00000
1	50 Trichloroethene	0.43701	0.41151	0.46462	0.43465	0.37373	0.38473	AVG AVC	3 N/A	A/M	1	0.41771		8.23804	15.00000
1	52 Dibromomethane	5676	7099	13826	51311	116579	224785	LNR LNF	r no	A/N	0.09170	0.21764		0.99861	0.99000
l	54 Bromodichloromethane	0.53945	0.48103	0.37120	0.45905	0.50110	0.52433	AVG AVC	G N\A	N/A	J	0.47936		12.59268	15.00000
	55 cis-1,3-dichloropropene	17313	35225	32454	153848	363919	697286	LNR LN	R NO	N\A	0.09355	0.67583		0.99677	0.99000
1	60 Toluene	0.99257	0.92624	0.96357	0.98247	0.89778	0.93036	AVG AVC	G N\A	N\A		0.94883		3.86360	15.00000
1	63 trans-1,3-Dichloropropene	11975	27300	32310	122603	282077	548623	LNR LNE	R NO	N/A	0.08463	0.52890		0.99790	0.99000
1	64 1,1,2~Trichloroethane	0.24686	0.24911	0.23640	0.25413	0.24564	0.25423	AVG AVG	G N\A	N\A		0.24773		2.66996	15.00000
-1	65 Dibromochloromethane	0.40532	0.40494	0.27835	0.36454	0.42325	0.42353	AVG AVG	G N\A	A/n	1	0.38332		14.54162	15.00000
	62 Tetrachloroethene	0.26564	0.34563	0.34850	0.35779	0.32693	0.33427	AVG AV	G N\A	N\A	ł	0.32979		10.08284	15.00000
-1	67 1,2-Dibromoethane	0.27884	0.27181	0.23980	0.29071	0.29044	0.29632	AVG AVG	G N\A	N\A	i	0.27799		7.45955	15.00000
_	70 Chlorobenzene	1.31068	1.26304	1.24233	1.30150	1.17363	1.18797	AVG AV	G N\A	N/A	i	1.24652		4.56238	15.00000
1	72 1,1,1,2-Tetrachloroethane	0.44909	0.45058	0.43343	0.46288	0.43789	0.44412	AVG AVG	G N\A	N/A	1	0.44633		2.33267	15.00000
•	71 Ethylbenzene	2.02453	2.07667	2.00515	2.10494	1.92516	1.95568	AVG AVG	G N\A	N\A		2.01535		3.41403	15.00000
• 	77 Bromoform	0.21838	0.21066	0.19572	0.23594	0.24769	0.24128	AVG AVG	G N\A	A/N	-	0.22495		8.90458	15.00000
1	76 Styrene	1.19486	1.24989	1.20699	1.32016	1.26207	1.27581	AVG AVG	G N\A	N\A	İ	1.25163		3.68009	15.00000
: . _	85 1,1,2,2-Tetrachloroethane	0.90278	0.99251	0.87050	0.85984	0.92675	0.89703	AVG AVC	G N/A	N/A	I	0.90823		5.24966	15.00000
. _		l	l			l <u></u>		l <u></u> l	_	ll				l	

INITIAL CALIBRATION DATA

Start Cal Date : 21-NOV-2002 07:41 End Cal Date : 21-NOV-2002 10:26

Quant Method : ISTD Target Version : 4.12 Integrator Method file : HP RTE

: \chem\gcms-s.i\s112102.b\8260APIX.m : 05-Mar-2003 08:59 bgosselin

Cal Date

Global Auto Calibration Mode = TEST AVG. %RSD BEFORE AUTO CALIBRATION

	5.0000	10.0000	20.0000	50.0000	100.0000	200.0000	Old New	Crv	WtFactr	Co	efficients		%RSD	Max %RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv Crv	Org	1	b	m1	m2	or R^2	or R^2
**************************************	=======		========						*****	****	*******			
88 1,2,3-Trichloropropane	1.13849	1.31783	1.02660	1.13977	1.20705	1.11463	AVG AVG	N\A	N/A		1.15739		8.44881	15.00000
100 1,2-Dibromo-3-Chloropropane	0.29993	0.30472	0.24562	0.26185	0.28530	0.26248	AVG AVG	N\A	N\A	i	0.27665		8.53438	15.00000
15 Acetone	4757	11273	17628	67711	123215	225048	LNR LNR	NO	A/N	-0.11464	0.06547		0.99428	0.99000
41 2-Butanone	0.05175	0.05189	0.04168	0.06013	0.05995	0.06131	AVG AVG	$ N\backslash A $	A/N		0.05445		13.89864	15.00000
61 4-methyl-2-pentanone	0.20934	0.21952	0.19078	0.25729	0.23104	0.23571	AVG AVG	N\A	N\A		0.22395		10.24785	15.00000
68 2-Hexanone	0.22059	0.23580	0.19521	0.22199	0.25060	0.25194	AVG AVG	N\A	N/A		0.22936		9.35098	15.00000
29 Vinyl Acetate	13235	19051	39463	153208	327965	686731	LNR LNR	NO	N\A	0.12656	0.66355		0.99682	0.99000
10 Carbon Disulfide	2.09134	2.11657	2.05704	2.22002	1.94442	1.93796	AVG AVG	N\A	N/A	j	2.06122		5,22712	15.00000
20 Acetonitrile	1156	3222	6099	22414]	31271	60357	QUA QUA	NO	N\A	0.46135	80.79262	100	0.98827	0.99000
13 Acrolein	0.03492	0.03287	0.03003	0.03904	0.03248	0.03105	AVG AVG	N\A	N\A		0.03340		9.66721	15.00000
27 Acrylonitrile	0.11486	0.10693	0.10681	0.14767	0.12365	0.12498	AVG AVG	N\A	N/A		0.12081		12.66913	15.00000
23 Chloroprene	0.90509	0.90825	0.71417	0.75498	0.89350	0.91242	AVG AVG	N\A	N/A		0.84807		10.50355	15.00000
18 Allyl Chloride	0.77188	0.70705	0.71389	0.98146	0.70642	0.83118	AVG AVG	N\A	A/N		0.78531		13.73924	15.00000
57 1,4-Dioxane	3109	4810	8551	23626	31707	23732	QUA QUA	NO	N\A	-16.32090	1208	-5792	0.57008	0.99000
25 Propionitrile	0.04169	0.04667	0.04067	0.05728	0.04629	0.04528	AVG AVG	N\A	N/A	i	0.04631		12.75833	15.00000
45 Ethyl Methacrylate	0.32104	0.36424	0.32862	0.42473	0.39139	0.42118	AVG AVG	N\A	N\A		0.37520		11.95072	15.00000
12 Iodomethane	9410	8087	9670	45467	195997		AUQ AUQ			0.21395	1.80249	-0.07044	0.98465	0.99000
16 Isobutyl Alcohol	8602	16116	24799	89645	195632		LNR LNR		N\A	1.06246	0.027591		0.99885	0.99000
24 Methacrylonitrile	0.25358	0.24954	0.22351	0.29176	0.25670		AVGIAVG		N\A		0.25403		8.63750	
32 Methyl Methacrylate	0.19559	0.21722	0.19360	0.23946	0.22690		AVG AVG		N\A	j	0.21801		9.03093	
	i	i	į	i	i		i i	i i		i	i			

INITIAL CALIBRATION DATA

Start Cal Date : 21-NOV-2002 07:41 End Cal Date : 21-NOV-2002 10:26

Quant Method : ISTD Target Version : 4.12 Integrator Method file : HP RTE

: \chem\gcms-s.i\s112102.b\8260APIX.m : 05-Mar-2003 08:59 bgosselin

Cal Date

Global Auto Calibration Mode = TEST AVG. %RSD BEFORE AUTO CALIBRATION

	5.0000	10.0000	20.0000	50.0000	100.0000	200.0000	Old New Cr	v WtFactr	Co	efficients		*RSD	Max %RSD
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv Crv Or	g I	b	ml	m2	or R^2	or R^2
		=======================================			========			= =====	========			****===	=======
91 Pentachloroethane	0.87079	1.03993	0.86884	0.87456	0.79267	0.79451	AVG AVG N\	A N\A	1	0.87355		10.30307	15.00000
81 trans-1,4-Dichloro-2-Butene	0.23843	0.26234	0.21918	0.23314	0.26529	0.26053	AVG AVG N\	A N\A		0.24649		7.67686	15.00000
M 73 Xylenes (total)	2.22884	2.25175	2.25203	2.36777	2.15674	2.13951	AVG AVG N	A N\A	1	2.23277		3.66329	15.00000
74 m+p-Xylenes	0.76494	0.75332	0.76788	0.79675	0.71506	0.71145	AVG AVG N\	A N\A	1	0.75157		4.38542	15.00000
75 o-Xylene	0.69896	0.74510	0.71626	0.77427	0.72662	0.71660	AVG AVG N	A NA	1	0.72964		3.64199	15.00000
59 2-Chloroethylvinylether	389	835	1120	5366	10850	19847	LNR LNR N	A/N O	0.05245	0.01929		0.99747	0.99000
30 cis-1,2-Dichloroethene	0.72319	0.68347	0.70694	0.72300	0.65550	0.66840	AVG AVG N	A N\A	1	0.69342		4.13314	15.00000
M 31 1,2-Dichloroethylene (total	1.39523	1.34181	1.35534	1.37566	1.26900	1.27949	AVG AVG N	A/N A	ļ	1.33609		3.84123	15.00000
						****	*******		*******				****
\$ 38 Dibromofluoromethane	0.60477	0.62294	0.60313	0.53579	0.63243	0.61812	AVG AVG N	A N\A]	0.60286		5.75185	15.00000
\$ 46 1,2-Dichloroethane-D4	0.57075	0.59434	0.53385	0.49497	0.62760	0.59182	AVG AVG N	A N\A		0.56889		8.36201	15.00000
\$ 58 Toluene-D8	1.27056	1.33509	1.31967	1.11826	1.25762	1.25374	AVG AVG N	A N\A	I	1.25916		6.09436	15.00000
\$ 79 P-Bromofluorobenzene	0.48146	0.53758	0.49734	0.43274	0.49268	0.49854	AVG AVG N	A N\A]	0.49005		6.91973	15.00000
		i					111					l	l

Annote: W = Failed %RSD Value. X = Failed R^2 Value. Y = Failed Mininum RF. O = Kept original curve D = Curve replaced with Y = Failed Mininum RF. O = Kept original curve D = Curve replaced with

Katahdin Analytical Services

INITIAL CALIBRATION DATA

Start Cal Date : 21-NOV-2002 07:41 End Cal Date : 21-NOV-2002 10:26

Quant Method : ISTD Target Version : 4.12 Integrator : HP RTE

: \chem\gcms-s.i\s112102.b\8260APIX.m : 05-Mar-2003 08:59 bgosselin Method file

Cal Date

Global Auto Calibration Mode = TEST AVG. %RSD BEFORE AUTO CALIBRATION

Average %RSD Results. |Calculated Average %RSD = 7.29558 Maximum Average %RSD = 15.00000 * Passed Average %RSD Test.

Curve	Formula	Units
C343680263	· · · · · · · · · · · · · · · · · · ·	
Averaged	Amt = Rsp/ml	Response
Linear	Amt = b + Rsp/ml	Response
Quad	$Amt = b + m1*Rsp + m2*Rsp^2$	Response
l		l

- 0 = Kept original curve.
- D = Curve replaced with the default curve option.

FORM 2 WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

	CLIENT	LAB	SMC1	!	SMC3		
	SAMPLE ID	SAMPLE ID	DBF#	DCA#	TOL#	BFB#	OUT
			====	====	====	====	===
01	WG1691-LCS	WG1691-2	87	96	89	92	0
02	WG1691-BLANK	WG1691-1	83	94	87	90	0
03	TB-013103	WT0233-8	88	91	91	87	0
04	TB-020303	WT0246-14	90	103	94	98	0
05	S1MW-7-0103	WT0233-6	92	105	94	97	0
06	0103-DUP-01	WT0233-7	90	111	93	96	0
07	S9MW-5-0103	WT0246-1	88	103	92	96	0
08	S9MW-12-0103	WT0246-2	87	102	93	100	0
09	S9MW-14-0103	WT0246~3	84	101	92	96	0
10	S9MW-15-0103	WT0246~4	90	103	92	97	0
11	S9MW-24-0103	WT0246-6	87	104	91	95	0
12	S9MW-25-0103	WT0246-7	86	95	92	90	0
13	0103-DUP-06	WT0246-8	84	104	90	92	oj
14	S9MW-22-0103	WT0246-13	91	105	90	95	ol
15	WG1695-LCS	WG1695-2	83	91	90	96	0
16	WG1695-BLANK	WG1695-1	. 80	96	91	97	ol
17	S9MW-21-0103	WT0246-5	78	91	88	90	o
18	S1MW-5-0103	WT0246-9	90	104	91	94	0
19	S9MW-14-0103-DL	WT0246-3	83	93	88	96	οį
20	S9MW-15-0103-DL	WT0246-4	91	102	90	94	οİ
21	S9MW-24-0103-DL	WT0246-6	89	107	91	96	οİ
22	0103-DUP-06-DL	WT0246-8	89	103	90	100	οį
23	S9MW-22-0103-DL	WT0246-13	87	104	93	100	οĺ
24	S9MW-5-0103MS	WG1695-3	87	96	90	98	οį
25	S9MW-5-0103MSD	WG1695-4	87	96	92	96	0
26			j			į	i
27						i	
28			i		i		
	· · · · · · · · · · · · · · · · · · · 			· '		—-	—.

SMC1 (DBF) = Dibromofluoromethane (75-129) SMC2 (DCA) = 1,2-Dichloroethane-D4 (65-135) SMC3 (TOL) = Toluene-D8 (82-120) SMC4 (BFB) = P-Bromofluorobenzene (69-125)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: SB714

BFB Injection Date: 02/07/03

Instrument ID: GCMS-S

BFB Injection Time: 1100

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		========
50	15.0 - 40.0% of mass 95	20.9
75	30.0 - 60.0% of mass 95	46.0
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.4
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Greater than 50.0% of mass 95	75.0
175	4.0 - 9.0% of mass 174	6.4 (8.5)1
176	95.0 - 101.0% of mass 174	72.9 (97.1)1
177	5.0 - 9.0% of mass 176	4.9 (6.7)2
j j		

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	==========	=======	========	
01		VSTD050S07A	S5814	02/07/03	1131
02	WG1691-LCS	WG1691-2	S5815	02/07/03	1229
03	WG1691-BLANK	WG1691-1	S5816	02/07/03	1322
04	TB-013103	WT0233-8	S5817	02/07/03	1406
05	TB-020303	WT0246-14	S5818	02/07/03	1439
06	S1MW-7-0103	WT0233-6	S5819	02/07/03	1512
07	0103-DUP-01	WT0233-7	S5820	02/07/03	1545
80	S9MW-5-0103	WT0246-1	S5821	02/07/03	1618
09	S9MW-12-0103	WT0246-2	S5822	02/07/03	1652
10	S9MW-14-0103	WT0246-3	S5823	02/07/03	1725
11	S9MW-15-0103	WT0246-4	S5824	02/07/03	1758
12	S9MW-24-0103	WT0246-6	S5826	02/07/03	1905
13	S9MW-25-0103	WT0246-7	S5827	02/07/03	1937
14	0103-DUP-06	WT0246-8	S5828	02/07/03	2011
15	S9MW-22-0103	WT0246-13	S5830	02/07/03	2117
16					
17					
18					
19					
20					i
21					
22					

page 1 of 1

FORM V VOA

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GCMS-S Calibration Date: 02/07/03 Time: 1131

Lab File ID: S5814 Init. Calib. Date(s): 11/21/02 11/21/02

Init. Calib. Times: 0741 1026

GC Column: RTX-VMS ID: 0.18 (mm)

	1	RRF50.000		<u> </u>	l .	1	1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
=======================================		=======	=======	=====	•	=======	!!
Dichlorodifluoromethane	0.7150000	0.7515800	0.7515800	0.01	5.12	İ	AVRG
Chloromethane	1.0320000	0.8456400	0.8456400	0.1	-18.06	İ	AVRG
Vinyl chloride	0.7980000	0.7671100	0.7671100	0.01	-3.87	20.00	
Bromomethane	40.330000	50.000000	0.3111800	0.01	-19.34		LINR
Chloroethane		0.4354400			-3.02	İ	AVRG
Trichlorofluoromethane		0.9010000					AVRG
1,1-Dichloroethene_		0.5509000			-2.50	20.00	
Carbon Disulfide	2.0610000	1.9349000	1.9349000				AVRG
Iodomethane	49.612000	50.000000	0.4393300	0.01		•	2RDR
Acrolein	3.3e-002	6.86e-002	6.86e-002	0.01		1	AVRG
Methylene Chloride		0.6806300			8.52		AVRG
Acetone	154.45000	250.00000	4.2e-002	0.01	ಿ-38.22		LINR
Isobutyl Alcohol	1445.7000	1000.0000	3.84e-002	0.01	44.57		LINR
trans-1,2-Dichloroethene		0.6276100					AVRG
Allyl Chloride	0.7850000	0.7544400	0.7544400	0.01	-3.89		AVRG
Acetonitrile	610.44000	500.00000	1.26e-002	0.01		· ·	2RDR
Chloroprene		0.7936900			-6.40		AVRG
Methacrylonitrile	0.2540000	0.3201500	0.3201500	0.01	26.04		AVRG
Propionitrile		5.81e-002			26.30		AVRG
1,1-Dichloroethane		1.1668000			-2.44		AVRG
Acrylonitrile		0.1313800			8.58		AVRG
Vinyl Acetate	67.262000				34.52		LINR
cis-1,2-Dichloroethene	0.6930000	0.6594600	0.6594600	0.01	-4.84		AVRG
1,2-Dichloroethylene (total)	1.3360000			0.01	-3.66		AVRG
Methyl Methacrylate		0.3012200		0.01	38.17		AVRG
Chloroform	1.1110000	1.1255000	1.1255000	0.01	1.30		
Carbon Tetrachloride	62.500000	50.000000	0.4697000	0.01	25.00		2RDR
1,1,1-Trichloroethane		0.9129400			9.73		AVRG
2-Butanone		5.46e-002		0.01	1.11		AVRG
		İ	j				

page 1 of 3

FORM VII PEST

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-S Calibration Date: 02/07/03 Time: 1131

Lab File ID: S5814 Init. Calib. Date(s): 11/21/02 11/21/02

Init. Calib. Times: 0741 1026

GC Column: RTX-VMS ID: 0.18 (mm)

		J	RRF50.000	ļ			1	1
E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURY
		AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYP
		=======	=======	=======	=====	======	========	:
	Benzene		1.6156000			-3.72	•	AVR
	Ethyl Methacrylate	0.3750000	0.4250200	0.4250200	0.01	13.34	j	AVR
	1,2-Dichloroethane	0.4590000	0.5410600	0.5410600	0.01	17.88	i	AVR
2	Trichloroethene	0.4180000	0.4200700	0.4200700	0.01	0.50	İ	AVRO
	Dibromomethane	58.284000	50.000000	0.2337500	0.01	16.57		LINE
,	1,2-Dichloropropane	0.4260000	0.4171400	0.4171400	0.01	-2.08	<u> </u>	,
	Bromodichloromethane	0.4790000	0.5434200	0.5434200	0.01	13.45		AVRO
ļ	cis-1,3-dichloropropene	54.948000	50.000000	0.6794900	0.01	9.90		LINE
	1,4-Dioxane	1556.2000	1000.0000	2.62e-003	0.01			2RDF
	2-Chloroethylvinylether	20.523000	50.000000	6.9e-003	0.01	-58.95		LINE
an that was disa	Toluene	0.9490000	0-9743100	0.9743100	0.01	2.67	20.00	•
ែល ម៉ាន់ពេទីនេ	4-methyl-2-pentanone	0.2240000	0.3252200	0.3252200	0.01	45.19		AVRO
:	Tetrachloroethene	0.3300000	0.3657700	0.3657700	0.01	10.84		AVRO
]	trans-1,3-Dichloropropene_	55.066000	50.000000	0.5377200	0.01	10.13		LINE
Į	1,1,2-Trichloroethane	0.2480000	0.2625600	0.2625600	0.01	5.87		AVRO
	Dibromochloromethane	0.3830000	0.4315900	0.4315900	0.01	12.69		AVRO
:	1,2-Dibromoethane		0.3080900			10.82		AVRO
	2-Hexanone		0.2697500			17.80		AVRO
	Chlorobenzene		1.2756000		0.3	2.29		AVRO
	Ethylbenzene	2.0150000	2.0911000	2.0911000	0.01	3.78	20.00	
1	1,1,1,2-Tetrachloroethane	0.4460000	0.4519600	0.4519600	0.01	1.34		AVRG
!	Xylenes (total)	2.2330000	2.2612000	2.2612000	0.01	1.26		AVRG
]	m+p-Xylenes	0.7520000	0.7592600	0.7592600	0.01	0.96		AVRO
	o-Xylene		0.7427200		0.01	1.74		AVRO
	Styrene_	1.2520000	1.3342000	1.3342000	0.01	6.56		AVRO
	Bromoform	0.2250000	0.2661900	0 2661900	0.1	18.31		AVRO
1	trans-1,4-Dichloro-2-Butene_	0.2460000	0.2628200	0.2628200	0.01	6.84		
ĺ	1,1,2,2-Tetrachloroethane	0.90800001	0.9489200	0.9489200	0.01	4.51		AVRO
			1.2045000		0.01	4.02		AVRG
				T. 20 20 00	0.01	4.02(ì	AVRG

page 2 of 3

FORM VII PEST

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de Anguardo (A.) de la companya del companya de la companya de la companya del companya de la companya del la companya de l

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-S Calibration Date: 02/07/03 Time: 1131

Lab File ID: S5814 Init. Calib. Date(s): 11/21/02 11/21/02

Init. Calib. Times: 0741 1026

GC Column: RTX-VMS ID: 0.18 (mm)

	l	RRF50.000					 -
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	TRUUOMA	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
=======================================	========	========	=======	=====	======	========	====
Pentachloroethane	0.8740000	0.8027300	0.8027300	0.01	-8.15		AVRG
1,2-Dibromo-3-Chloropropane_	0.2770000	0.2847900	0.2847900	0.01	2.81		AVRG
=======================================	========	=======	=======	=====	======	=======	====
Dibromofluoromethane	0.6030000	0.5011800	0.5011800	0.01	-16.89		AVRG
1,2-Dichloroethane-D4	0.5690000	0.5512800	0.5512800	0.01	-3.11		AVRG
Toluene-D8	1.2590000	1.1264000	1.1264000	0.01	-10.53		AVRG
P-Bromofluorobenzene	0.4900000	0.4645100	0.4645100	0.01	-5.20		AVRG

page 3 of 3

FORM VII PEST

KATAHDIN ANALYTICAL SERVICES

Report of Analytical Results

Client:

Project: NAF KEY WEST CTO233

PO No: Sample Date: Received Date:

Extraction Date: 02/07/03 Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WG1691-1 Client ID: WG1691-BLANK

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

	CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
	75-71-8	Dichlorodifluoromethane	υ	5	1.0	5	5	0.2
	74-87-3	Chloromethane	U	5	1.0	5	5	0.3
	75-01-4	Vinyl chloride	σ	2	1.0	2	2	0.1
	74-83-9	Bromomethane	ש	5	1.0	5	5	0.9
	75-00-3	Chloroethane	Ū	5	1.0	5	5	0.3
	75-69-4	Trichlorofluoromethane	ប	5	1.0	5	5	0.2
	75-35-4	1,1-Dichloroethene	U	5	1.0	5	5	0.3
	75-15-0	Carbon Disulfide	Ū	5	1.0	5	5	0.2
	74-88-4	Iodomethane	σ	10	1.0	10	10	0.2
	107-02-8	Acrolein	บ	50	1.0	50	50	3
	75-09-2	Methylene Chloride	ប	5	1.0	5	5	0.3
	67-64-1	Acetone	U	10	1.0	10	10	3
	78-83-1	Isobutyl Alcohol	U ·	100	1.0	100	100	78
	156-60-5	trans-1,2-Dichloroethene	U	. 5	1.0		5	1027.
1 21.31.	107-05-1	Allyl Chloride	σ	10	1.0	10	ia 10	M (1 %
	75-05-8	Acetonitrile	U	50	1.0	50	50	6
	126-99-8	Chloroprene	ប	10	1.0	10	10	2
	126-98-7	Methacrylonitrile	U	50	1.0	50	50	11
	107-12-0	Propionitrile	σ	50	1.0	50	50	16
	75-34-3	1,1-Dichloroethane	ប	5	1.0	5	5	0.1
	107-13-1	Acrylonitrile	ប	10	1.0	10	10	0.8
	108-05-4	Vinyl Acetate	U	5	1.0	5	5	0.3
	156-59-2	cis-1,2-Dichloroethene	ប	5	1.0	5	5	0.5
	540-59-0	1,2-Dichloroethylene (total)	ប	5	1.0	5	5	1
	80-62-6	Methyl Methacrylate	ប	10	1.0	10	10	1
	67-66-3	Chloroform	ប	5	1.0	5	5	0.2
	56-23-5	Carbon Tetrachloride	ប	5	1.0	5	5	0.3
	71-55-6	1,1,1-Trichloroethane	U	5	1.0	5	5	0.7
	78-93-3	2-Butanone	ប	10	1.0	10	10	2
	71-43-2	Benzene	ប	5	1.0	5	5	0.1
	97-63-2	Ethyl Methacrylate	ប	10	1.0	10	10	0.9
	107-06-2	1,2-Dichloroethane	ប	5	1.0	5	5	0.3
	79-01-6	Trichloroethene	σ	5	1.0	5	5	0.6
	74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
	78-87-5	1,2-Dichloropropane	ប	5	1.0	5	5	0.2
	75-27-4	Bromodichloromethane	ប	5	1.0	5	5	0.2
	10061-01-5	cis-1,3-dichloropropene	U	5	1.0	5	5	0.4
	123-91-1	1,4-Dioxane	U	100	1.0	100	100	43
	110-75-8	2-Chloroethylvinylether	υ	5	1.0	5	5	0.5
	108-88-3	Toluene	U	5	1.0	5	5	0.2
	108-10-1	4-methyl-2-pentanone	U	10	1.0	10	10	2
	127-18-4	Tetrachloroethene	U	5	1.0	5	5	0.4
	10061-02-6	trans-1,3-Dichloropropene	U	5	1.0	5	5	0.4

Page 01 of 02 S5816.D

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CTO233

PO No: Sample Date: Received Date:

Extraction Date: 02/07/03 Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WG1691-1

Client ID: WG1691-BLANK

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
79-00-5	1,1,2-Trichloroethane	ט	. 5	1.0	5	5	0.3
124-48-1	Dibromochloromethane	Ū	5	1.0	5	5	0.3
106-93-4	1,2-Dibromoethane	υ	5	1.0	5	5	0.2
591-78-6	2-Hexanone	U	10	1.0	10	10	2
108-90-7	Chlorobenzene	U	5	1.0	5	5	0.2
100-41-4	Ethylbenzene	ប	5	1.0	5	5	0.1
630-20-6	1,1,1,2-Tetrachloroethane	υ	5	1.0	5	5	0.2
1330-20-7	Xylenes (total)	Ū	5	1.0	5	5	0.2
	m+p-Xylenes	υ	5	1.0	5	5	0.2
95-47-6	o-Xylene	U	5	1.0	5	5	0.2
100-42-5	Styrene	U	5	1.0	5	5	0.3
75-25-2	Bromoform	ប	5	1.0	5	5	0.4
110-57-6	trans-1,4-Dichloro-2-Butene	U	10	1.0	10	10	0.5
79-34-5	1,1,2,2-Tetrachloroethane	υ	5.	1.0	·5	5	0.4
96-18-4	1,2,3-Trichloropropane	ប	5	1.0	√5	5	0.9
76-01-1	Pentachloroethane	υ	10	1.0	10	10	2
96-12-8	1,2-Dibromo-3-Chloropropane	U	5	1.0	5	5	0.6
1868-53-7	Dibromofluoromethane		83%				
17060-07-0	1,2-Dichloroethane-D4		94%				
2037-26-5	Toluene-D8		87%				
460-00-4	P-Bromofluorobenzene		90왕				

Page 02 of 02 S5816.D

Data File: \\Target_server\GG\chem\gcms-s.i\s020703.b\S5816.D Page 5

Report Date: 26-Feb-2003 11:50

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name:

Lab Smp Id: WG1691-1

Operator : JSS Sample Location:

Sample Matrix: WATER

Analysis Type: VOA

Inj Date: 07-FEB-2003 13:22

Client SDG: SDGa01256

Client Smp ID: WG1691-BLANK

Sample Date: Sample Point: Date Received:

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

Number TICs found: 0 (ug/I

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		======	=========	=====
· · · · · · · · · · · · · · · · · · ·		l		

KATAHDIN ANALYTICAL SERVICES LAB CONTROL SAMPLE

Client:

Project: NAF KEY WEST CTO233

PO No: Sample Date: Received Date:

Extraction Date: 02/07/03 Analysis Date: 02/07/03 Report Date: 03/05/2003

Matrix: WATER

Lab ID: WG1691-2

Client ID: WG1691-LCS

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

	LCS	SAMPLE	LCS		QC.
COMPOUND	SPIKE	CONC.	CONC.	%REC.	LIMITS
Dichlorodifluoromethane	50	NA	48	96	4-217
Chloromethane	50	NA	36	72	40-163
Vinyl chloride	50	NA	47	95	55-151
Bromomethane	50	NA	40	81	24-217
Chloroethane	50	NA	51	103	69-134
Trichlorofluoromethane	50	NA	54	109	71-147
1,1-Dichloroethene	50	NA	46	92	78-136
Carbon Disulfide	50	NA	49	98	70-136
Iodomethane	50	NA	48	96	60-140
Acrolein	250	NA	496	198	0-199
Methylene Chloride	50	NA	42	84	52-115
Acetone	50	NA	39	78	0-158
Isobutyl Alcohol	1000	NA	1400	140	60-140
trans-1,2-Dichloroethene	. 50	NA	47	95	84-131
Allyl Chloride	50	NA.	46	91	60-140
Acetonitrile	500	NA	580	116	53-141
Chloroprene	50	NA	48	96	60-140
Methacrylonitrile	500	NA	619	124	60-140
Propionitrile	500	NA	599	120	60-140
1,1-Dichloroethane	50	NA	46	93	81-134
Acrylonitrile	250	NA	271	108	29-172
Vinyl Acetate	50	NA	55	109	68-174
cis-1,2-Dichloroethene	50	NA	45	90	84-123
1,2-Dichloroethylene (total)	100	NA	93	93	84-131
Methyl Methacrylate	50	NA	66	132	60-140
Chloroform	50	NA	48	97	80-130
Carbon Tetrachloride	_ 50	NA	60	120	74-137
1,1,1-Trichloroethane	50	NA	52	104	76-138
2-Butanone	50	NA	72	144	49-154
Benzene	50	NA	46	91	88-120
Ethyl Methacrylate	50	NA	54	107	60-140
1,2-Dichloroethane	50	NA	54	109	78-138
Trichloroethene	50	NA	41	82	80-125
Dibromomethane	50	NA	53	105	88-130
1,2-Dichloropropane	50	NA	45	89	80-122
Bromodichloromethane	50	NA	50	100	83-133
cis-1,3-dichloropropene	50	NA	51	101	81-138
1,4-Dioxane	1000	NA	1380	138	60-140
2-Chloroethylvinylether	50	NA	64	127	50-211
Toluene	50	NA	48	96	88-121
4-methyl-2-pentanone	50	NA	64	128	72-140
Tetrachloroethene	50	NA	53	107	77-129
trans-1,3-Dichloropropene	50	NA	54	108	81-149
1,1,2-Trichloroethane	50	NA	47	93	82-126
Dibromochloromethane	50	NA	52	105	80-133

page 1 of 2

FORM III VOA-1

S5815.D

KATAHDIN ANALYTICAL SERVICES LAB CONTROL SAMPLE

Client:

Project: NAF KEY WEST CTO233

PO No:

Sample Date: Received Date:

Extraction Date: 02/07/03 Analysis Date: 02/07/03

Report Date: 03/05/2003

Matrix: WATER

Lab ID: WG1691-2

Client ID: WG1691~LCS

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1691

Units: ug/l

	LCS	SAMPLE	LCS		QC.
COMPOUND	SPIKE	CONC.	CONC.	%REC.	LIMITS
1,2-Dibromoethane	50	NA	51	102	88-12 7
2-Hexanone	50	NA	58	116	45-146
Chlorobenzene	50	NA	48	96	84-123
Ethylbenzene	50	NA	50	100	84-131
1,1,1,2-Tetrachloroethane	50	NA	47	94	83-130
Xylenes (total)	150	NA	147	98	88-123
m+p-Xylenes	100	NA	97	97	88-122
o-Xylene	50	NA	50	100	90-123
Styrene	50	NA	49	99	87-137
Bromoform	50	NA	52	103	77-138
trans-1,4-Dichloro-2-Butene	50	NA	52	103	60-140
1,1,2,2-Tetrachloroethane	50	NA	49	98	81-131
1,2,3-Trichloropropane	50	NA	46	93	76-132
Pentachloroethane	50	NA	46	92	60-140
1,2-Dibromo-3-Chloropropane	50	NA	50	99	61-136

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): S5814

Date Analyzed: 02/07/03

Instrument ID: GCMS-S

Time Analyzed: 1131

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

I		•	IS1 (PFB)	-		_	IS2 (DFB)				TG2 (GDE)	_		
			AREA	<u>" </u>	RT	#			RT	щ	IS3(CBZ)	.	15m	11
			AREA	#	K1	#	AREA	#]	RT	#	AREA #	•		#
12 HOU	TD C/T/D		150107	= =	9.40	~	227672	=	10.06	=	702040	1=	12 01	
UPPER	-		300214		9.90		455344	- 1			183840	ļ	13.21	
LOWER			75054	. !					10.56		367680	ļ	13.71	
		1		.'	8.90	,	113836		9.56	!	91920	ŀ	12.71	
•	ent sample	LAB SAMPLE		= { ==		==	=====================================	= =		== 	#=======	==		=
l CDI	ID	I ID		-		į	1	- 1		1		!		
 	10	I		t !		1	 			!		1		
01 WG1691-L		WG1691-2	146137	= ==:	9.41	==;	225993	٠,	10.06	== :] ==		==
02 WG1691-B		WG1691-1	149012	•	9.41		225993	•		ı,	180148	 -	13.20	
03 TB-01310		WT0233-8	145116	•	9.41	- 1	226049	•	10.07	1	173727	•	13.20	
04 TB-02030		WT0233-8	l .	•	9.41			•	10.07	- 1	172058	•	13.21	
05 S1MW-7-0		•	134865	•			205141	•	10.07	ļ	164393	•	13.21	
		WT0233-6	138662	•	9.41		210955	•	10.07	į	162580	•	13.21	
06 0103 -DUP	•	WT0233-7	133311	•	9.41	1	205122		10.07	1	158360		13.21	
		WT0246-1	131520	•	9.41	. !	200698	•		1	157154	•	13.21	
08 S9MW-12-0		WT0246-2	135137	•	9.41		202419	•	10.07	I	160963		13.21	
09 S9MW-14-0		WT0246-3	134570	•	9.41	. !	201472	•	10.07	- 1	161687	•	13.21	i
10 S9MW-15-		WT0246-4	132811	•	9.41	ļ	202115	•	10.07	ŀ	161261	•	13.21	
11 S9MW-24-		WT0246-6	134487	•	9.41)	206737	•	10.07	ŀ	160286	•	13.21	
12 S9MW-25-0		WT0246-7	133658	•	9.42	1	199286	•	10.07	ŀ	158029	ł	13.21	
13 0103-DUP		WT0246-8	133107	•	9.41	1	204799	ı	10.07	i	155766	į –	13.22	
14 S9MW-22-0	0103	WT0246-13	131088	.	9.41	ł	197284	ļ	10.07	- 1	156603	1	13.21	J
15		l <u></u>		_I		l		_ _		_1	l	۱		
16	.	.![_1		!		_!_		_1		l		_{
17		l[_				_1_		_1		l		
18		1		_		1	<u> </u>	_1_		_[l		_1
19		!!		_l		!		_1_		_l		i_		1
20		ll		_1		!	·	_ _		_1		l_		_

IS1 (PFB) = Pentafluorobenzene

(DFB) = 1,4-Difluorobenzene IS2

(CBZ) = Chlorobenzene-D5 IS3

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 1 of 2

FORM VIII VOA

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): S5814 Date Analyzed: 02/07/03

Instrument ID: GCMS-S

Time Analyzed: 1131

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) N

!			IS4 (DCB)	<u> </u>	1	T	1	1
			AREA #	 RT #	 AREA #	 RT #	l AREA #	 RT :
			AREA #	K1 #	AREA #	"	! "	1
	12 HOUR STD		81604	14.86		======	======== 	=====:
	UPPER LIMIT	i	163208	15.36	<u> </u>		¦	!
	LOWER LIMIT		40802	14.36	·	·	l	ļ
	lowsk bimii	i i			I		Í	}
	CLIENT SAMPLE	LAB SAMPLE	E=====================================	=======		======= 		
	ID	I ID			1	l !	!	
	1				1	[! !	
0.1	•	======= WG1691-2	77462	14.86		======== 1	======================================	
	•	WG1691-2 WG1691-1	72536	14.86	l	ļ	!	
	•	WT0233-8		14.86	·	!		
	•	WT0233-8 WT0246-14	66406	14.85	ļ	!	ļ	
	•	WT0246-14 WT0233-6	64573		l	!		
		,	64594	14.86	ļ	!		
	•	WT0233-7	65135		<u> </u>			· · · · · · · · · · · · · · · · · · ·
\$6.44	•	WT0246-1	62536	14.86	ļ			<u> </u>
	•	WT0246-2	65568		!	!		
		WT0246-3	66653	14.86	!			
	•	WT0246-4	64630	14.86	!		! <u>-</u> !	
	•	WT0246-6	64128	14.86	!			
	•	WT0246-7	59001	14.87	!			
	• •	WT0246-8	62651	14.86	<u> </u>			
	•	WT0246-13	65652	14.86	<u> </u>			
15	·				l	l <u></u> -		
16	·				J	l		
17	·				!		l	
18	· - · · · · · · · · · · · · · · · · · ·	ll			l		<u> </u>	
19		l <u></u>			li	<u></u>	I	
20		ll				l <u></u> i		

IS4 (DCB) = 1,4-Dichlorobenzene-D4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 2 of 2

FORM VIII VOA

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: SB715

BFB Injection Date: 02/10/03

Instrument ID: GCMS-S

BFB Injection Time: 0916

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=======================================
50	15.0 - 40.0% of mass 95	23.2
75	30.0 - 60.0% of mass 95	47.2
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	8.4
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Greater than 50.0% of mass 95	108.6
175	4.0 - 9.0% of mass 174	$7.4 \overline{(6.8)1}$
176	95.0 - 101.0% of mass 174	106.9 (98.4)1
177	5.0 - 9.0% of mass 176	7.8 (7.3)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	==========		=======	=======
01		VSTD050S10C	S5833	02/10/03	1225
	WG1695-LCS	WG1695-2	S5834	02/10/03	1309
03	WG1695-BLANK	WG1695-1	S5835	02/10/03	1355
04	S9MW-21-0103	WT0246-5	S5836	02/10/03	1442
05	S1MW-5-0103	WT0246-9	S5837	02/10/03	1515
06	S9MW-14-0103-DL	WT0246-3	S5838	02/10/03	1548
	S9MW-15-0103-DL	WT0246-4	S5839	02/10/03	1621
08	S9MW-24-0103-DL	WT0246-6	S5840	02/10/03	1719
09	0103-DUP-06-DL	WT0246-8	S5841	02/10/03	1752
10	S9MW-22-0103-DL	WT0246-13	S5842	02/10/03	1826
11	S9MW-5-0103MS	WG1695-3	S5843	02/10/03	1859
12	S9MW-5-0103MSD	WG1695-4	S5844	02/10/03	1932
13			İ	1	
14					
15					
16					
17					
18					
19					
20					
21			i		
22			i		

page 1 of 1

FORM V VOA

Spada, Bernie

From: Andrea Colby [acolby@katahdinlab.com]

Sent: Wednesday, March 26, 2003 8:56 AM

To: Spada, Bernie

Subject: Re: Key West CTO-233 SDG-2334

Bernie,

You are correct, here is the revised CCAL.

Thanks, Andrea

----Original Message----

From: Spada, Bernie <<u>SpadaB@ttnus.com</u>>
To: 'Andrea Colby' <<u>acolby@katahdinlab.com</u>>
Date: Wednesday, March 26, 2003 7:56 AM
Subject: RE: Key West CTO-233 SDG-2334

Andrea,

Thank you for the resubmittal. I did notice something odd however. Shouldn't the CAL RRF 50 change? It's still the same value as the initial submittal (0.1337). It should be much lower now. Please let me know if this is correct and re-submit if so.

Thank you.

Bernie

----Original Message----

From: Andrea Colby [mailto:acolby@katahdinlab.com]

Sent: Tuesday, March 25, 2003 3:32 PM

To: Spada, Bernie

Subject: Re: Key West CTO-233 SDG-2334

Bernie,

Here is revised CCAL for 2-CEVE. Samples did not have any hits for this compound. Let me know if you need us

to send a revised hardcopy.

Thanks, Andrea

----Original Message----

From: Spada, Bernie < SpadaB@ttnus.com>
To: 'Andrea Colby' <acolby@katahdinlab.com>
Date: Tuesday, March 25, 2003 7:43 AM
Subject: Key West CTO-233 SDG-2334

Andrea,

Could you do me a favor and have the laboratory check the VOC CCAL from February 10 at 12:25 for 2-chloroethylvinyl ether? It appears that the same peak was used for toluene. I don't have any spectra to verify the compound. If the incorrect peak was used could you please revise the calibration for 2-CEVE? Thank you.

Bernard F Spada III

Bernard F Spada III

Environmental Scientist
TETRA TECH NUS, Inc.
Foster Plaza 7
661 Andersen Drive
Pittsburgh, PA 15220-2745
Telephone: (412) 921-8729
FAX: (412) 921-4040
spadab@ttnus.com
http://www.ttnus.com
http://www.tetratech.com

Lab Name: 'KATAHDIN ANALYTICAL SERVICE Lab Code: KAS

Project: 101-16

SDG No.: CTO233-4

Instrument ID: GCMS-S

Calibration Date: 02/10/03 Time: 1225

Lab File ID: S5833

Init. Calib. Date(s): 11/21/02 11/21/02

Init. Calib. Times: 0741 1026

GC Column: RTX-VMS ID: 0.18 (mm)

	l	RRF50.000				1	ŀ
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
	=======	=======	=======	====	======	=======	=== =
Dichlorodifluoromethane	0.7150000	0.6386300	0.6386300	0.01	-10.68	ĺ	AVRG
Chloromethane			0.9336200	0.1	-9.53	İ	AVRG
Vinyl chloride			0.7338700	0.01	-8.04	20.00	AVRG
Bromomethane	51.671000	50.000000	0.4070800	0.01	3.34		LINR
Chloroethane			0.4514000		0.53		AVRG
Trichlorofluoromethane	0.8250000	0.7753500	0.7753500	0.01	-6.02	ĺ	AVRG
1,1-Dichloroethene			0.5341000		-5.47	20.00	AVRG
Carbon Disulfide	2.0610000	1.8596000	1.8596000	0.01	-9.77		AVRG
Iodomethane	66.979000	50.000000	0.6405100	0.01	33.96		2RDR
Acrolein			6.01e-002	0.01	82.12		AVRG
Methylene Chloride			0.7311400	0.01	-1.73		AVRG
Acetone	330.86000	250.00000	8.82e-002	0.01	32.34		LINR
Isobutyl Alcohol	1452.1000	1000.0000	3.86e-002	0.01	45.21		LINR
trans-1,2-Dichloroethene			0.6181600	0.01	-3.86		AVRG
Allyl Chloride			0.7327600	0.01	-6.65		AVRG
Acetonitrile	520.39000	500.00000	1.09e-002	0.01	4.08		2RDR
Chloroprene	0.8480000	0.7753200	0.7753200	0.01	-8.57		AVRG
Methacrylonitrile	0.2540000	0.3058900	0.3058900	0.01	20.43		AVRG
Propionitrile			5.37e-002	0.01	16.74		AVRG
1,1-Dichloroethane	1.1960000	1.1600000	1.1600000	0.01	-3.01		AVRG
Acrylonitrile	0.1210000	0.1280100	0.1280100	0.01	5.79		AVRG
Vinyl Acetate	19.751000	50.000000	0.1781400	0.01	-60.50		LINR
cis-1,2-Dichloroethene		0.6822600	0.6822600	0.01	-1.55		AVRG
1,2-Dichloroethylene (total)	1.3360000	1.3004000	1.3004000	0.01	-2.66		AVRG
Methyl Methacrylate	0.2180000	0.2844600	0.2844600	0.01	30.49		AVRG
Chloroform	1.1110000	1.1037000	1.1037000	0.01	-0.66	20.00	AVRG
Carbon Tetrachloride	56.114000	50.000000	0.4128000	0.01	12.23		2RDR
1,1,1-Trichloroethane	0.8320000	0.8640400	0.8640400	0.01	3.85		AVRG
2-Butanone	5.4e-002	8.65e-002	8.65e-002	0.01	60.18		AVRG
			j		i		i i

Lab Name: 'KATAHDIN ANALYTICAL SERVICE Lab Code: KAS

Project: 101-16

SDG No.: CTO233-4

Instrument ID: GCMS-S Calibration Date: 02/10/03 Time: 1225

Init. Calib. Times: 0741 1026

GC Column: RTX-VMS ID: 0.18 (mm)

<u>'</u>	i	RRF50.000				1]	1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	İ
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE	İ
	=======	=======	=======	=====	======	=======	 ====	İ
Benzene	1.6780000	1.6513000	1.6513000	0.01	-1.59	j	AVRG	İ
Ethyl Methacrylate	0.3750000	0.4144000	0.4144000	0.01	10.51	į	AVRG	ĺ
1,2-Dichloroethane	0.4590000	0.5771100	0.5771100	0.01	25.73		AVRG	İ
Trichloroethene	0.4180000	0.4051300	0.4051300	0.01	-3.08		AVRG	İ
Dibromomethane	61.171000	50.000000	0.2463200	0.01	22.34		LINR	İ
1,2-Dichloropropane	0.4260000	0.4336000	0.4336000	0.01	1.78	20.00	AVRG	j
Bromodichloromethane	0.4790000	0.5560100	0.5560100	0.01	16.08	į	AVRG	İ
cis-1,3-dichloropropene	57.592000	50.000000	0.7152300	0.01	15.18	İ	LINR	İ
1,4-Dioxane	1235.8000	1000.0000	2.14e-003	0.01	23.58	ĺ	2RDR	 ->
2-Chloroethylvinylether_	12.877000	50.000000	3.96e-003	0.01	-74.25	j	LINR	<-
Toluene	0.9490000	0.9736100	0.9736100	0.01	2.59	20.00	AVRG	ĺ
4-methyl-2-pentanone	0.2240000	0.3672200	0.3672200	0.01	63.94	ĺ	AVRG	İ
Tetrachloroethene	0.3300000	0.3476700	0.3476700	0.01	5.35		AVRG	İ
trans-1,3-Dichloropropene	59.032000	50.000000	0.5796800	0.01	18.06	į	LINR	İ
1,1,2-Trichloroethane	0.2480000	0.2877600	0.2877600	0.01	16.03	į	AVRG	j
Dibromochloromethane	0.3830000	0.4571200	0.4571200	0.01	19.35	İ	AVRG	İ
1,2-Dibromoethane	0.2780000	0.3294500	0.3294500	0.01	18.51		AVRG	ĺ
2-Hexanone	0.2290000	0.4302400	0.4302400	0.01	87.88		AVRG	İ
Chlorobenzene	1.2470000	1.2905000	1.2905000	0.3	3.49		AVRG	İ
Ethylbenzene	2.0150000	2.0327000	2.0327000	0.01	0.88	20.00	AVRG	İ
1,1,1,2-Tetrachloroethane	0.4460000	0.4584200	0.4584200	0.01	2.78	ĺ	AVRG	İ
Xylenes (total)	2.2330000	2.2237000	2.2237000	0.01	-0.42		AVRG	İ
m+p-Xylenes	0.7520000	0.7467800	0.7467800	0.01	-0.69		AVRG	İ
o-Xylene	0.7300000	0.7301700	0.7301700	0.01	0.02		AVRG	İ
Styrene	1.2520000	1.3492000	1.3492000	0.01	7.76		AVRG	ĺ
Bromoform	0.2250000	0.2741500	0.2741500	0.1	21.84		AVRG	ĺ
trans-1,4-Dichloro-2-Butene_	0.2460000	0.2844900	0.2844900	0.01	15.65		AVRG	İ
1,1,2,2-Tetrachloroethane	0.9080000	1.0599000	1.0599000	0.3	16.73		AVRG	ĺ
1,2,3-Trichloropropane	1.1580000	1.2543000	1.2543000	0.01	8.32		AVRG	ĺ
			i					İ

Lab Name: 'KATAHDIN ANALYTICAL SERVICE Lab Code: KAS

Project: 101-16

SDG No.: CTO233-4

Instrument ID: GCMS-S

Calibration Date: 02/10/03 Time: 1225

Lab File ID: S5833

Init. Calib. Date(s): 11/21/02 11/21/02

Init. Calib. Times: 0741 1026

GC Column: RTX-VMS ID: 0.18 (mm)

		RRF50.000					
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	TRUDOMA	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
	=======		=======		======	=======	====
Pentachloroethane	0.8740000	0.7218300	0.7218300	0.01	-17.41		AVRG
1,2-Dibromo-3-Chloropropane	0.2770000	0.2784100	0.2784100	0.01	0.51	İ	AVRG
				=====	======	=======	====
Dibromofluoromethane	0.6030000	0.5173700	0.5173700	0.01	-14.20		AVRG
1,2-Dichloroethane-D4	0.5690000	0.5727800	0.5727800	0.01	0.66	İ	AVRG
Toluene-D8	1.2590000	1.1849000	1.1849000	0.01	-5.88	İ	AVRG
P-Bromofluorobenzene_	0.4900000	0.5011000	0.5011000	0.01	2.26		AVRG
							į į
	l					ll	

Data File: \\Tarqet server\GG\chem\gcms-s.i\s021003.b\S5833.D Page 1

Report Date: 25-Mar-2003 10:32

Katahdin Analytical Services

Data file: \\Target_server\GG\chem\gcms-s.i\s021003.b\S5833.D
Lab Smp Id: VSTD050S10C
Inj Date: 10-FEB-2003 12:25
Operator: JEY
Smp Info: VSTD050S10C
Misc Info: SW846 8260B

Misc Info : SW846 8260B

Comment

: \\Target_server\GG\chem\gcms-s.i\s021003.b\8260APIX.m Method

Meth Date: 05-Mar-2003 10:55 bgosselin Quant Type: ISTD Cal Date : 21-NOV-2002 10:26 Cal File: S5036.D

Als bottle: 4 Continuing Calibration Sample

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: SW8260APPIX-S.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name	Value	Description
DF Vo	1.000	Dilution Factor sample purged
Cond Variable	3.000	Local Compound Variable

Local Compound Variable cpnd Variable

						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
unds	MASS	RŤ	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/1)
	====	====			======	======	
Dichlorodifluoromethane	85	1.959	2.015	(0.208)	95742	50.0000	44.6
Chloromethane	50	2.191	2.259	(0.233)	139966	50.0000	45.2
Vinyl chloride	62	2.296	2.375	(0.244)	110019	50.0000	46.0
Bromomethane	94	2.713	2.804	(0.289)	61028	50.0000	51.7
Chloroethane	64	2.887	2.978	(0.307)	67672	50.0000	50.3
Trichlorofluoromethane	101	3.073	3.175	(0.327)	116238	50.0000	47.0
1,1-Dichloroethene	96	3.792	3.917	(0.403)	80070	50.0000	47.2
Methylene Chloride	84	4.708	4.857	(0.501)	109611	50.0000	49.1
trans-1,2-Dichloroethene	96	4.998	5.159	(0.531)	92672	50.0000	48.1
1,1-Dichloroethane	63	6.205	6.411	(0.660)	173912	50.0000	48.5
Chloroform	83	8.165	8.383	(0.868)	165459	50.0000	49.7
1,1,1-Trichloroethane	97	8.559	8.743	(0.910)	129535	50.0000	51.9
1,2-Dichloroethane	62	9.499	9.636	(1.000)	129710	50.0000	62.8
Carbon Tetrachloride	117	8.420	8.615	(1.000)	92780	50.0000	56.1(H)
Benzene	78	9.209	9.358	(1.000)	371131	50.0000	49.2
1,2-Dichloropropane	63	10.578	10.691	(1.000)	97455	50.0000	50.8
Trichloroethene	95	10.021	10.135	(1.000)	91055	50.0000	48.5(H)
Dibromomethane	93	10.473	10.575	(1.000)	55361	50.0000	61.2(H)
Bromodichloromethane	83	10.659	10.773	(1.000)	124966	50.0000	58.0
cis-1,3-dichloropropene	75	11.332	11.457	(1.000)	160752	50.0000	57.6
Toluene	92	11.599	11.724	(1.000)	218824	50.0000	51.3
trans-1,3-Dichloropropene	75	12.109	12.234	(1.000)	130286	50.0000	59.0
1,1,2-Trichloroethane	83	12.294	12.408	(1.000)	64675	50.0000	58.1
Dibromochloromethane	129	12.492	12.605	(0.941)	84469	50.0000	59.6
	Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride trans-1,2-Dichloroethane Chloroform 1,1,1-Trichloroethane 1,2-Dichloroethane Carbon Tetrachloride Benzene 1,2-Dichloropropane Trichloroethene Dibromomethane Bromodichloromethane cis-1,3-dichloropropene Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Dibromochloromethane	Dichlorodifluoromethane 85 Chloromethane 50 Vinyl chloride 62 Bromomethane 94 Chloroethane 101 1,1-Dichloroethane 96 Methylene Chloride 84 trans-1,2-Dichloroethane 63 Chloroform 83 1,1,1-Trichloroethane 97 1,2-Dichloroethane 62 Carbon Tetrachloride 117 Benzene 78 1,2-Dichloropropane 63 Trichloroethane 95 Dibromomethane 93 Bromodichloromethane 93 Bromodichloromethane 93 Bromodichloropropene 75 Toluene 92 trans-1,3-Dichloropropene 75 1,1,2-Trichloroethane 92 trans-1,3-Dichloropropene 75 1,1,2-Trichloroethane 83	Dichlorodifluoromethane 85 1.959 Chloromethane 50 2.191 Vinyl chloride 62 2.296 Bromomethane 94 2.713 Chloroethane 64 2.887 Trichlorofluoromethane 101 3.073 1,1-Dichloroethane 96 3.792 Methylene Chloride 84 4.708 trans-1,2-Dichloroethene 96 4.998 1,1-Dichloroethane 63 6.205 Chloroform 83 8.165 1,1,1-Trichloroethane 97 8.559 1,2-Dichloroethane 62 9.499 Carbon Tetrachloride 117 8.420 Benzene 78 9.209 1,2-Dichloropropane 63 10.578 Trichloroethene 95 10.021 Dibromomethane 93 10.473 Bromodichloromethane 83 10.659 cis-1,3-dichloropropene 75 11.332 Toluene 92 11.599 trans-1,3-Dichloropropene 75 12.109 1,1,2-Trichloroethane 92 11.599	Dichlorodifluoromethane 85 1.959 2.015 Chloromethane 50 2.191 2.259 Vinyl chloride 62 2.296 2.375 Bromomethane 94 2.713 2.804 Chloroethane 64 2.887 2.978 Trichlorofluoromethane 101 3.073 3.175 1,1-Dichloroethene 96 3.792 3.917 Methylene Chloride 84 4.708 4.857 trans-1,2-Dichloroethene 96 4.998 5.159 1,1-Dichloroethane 63 6.205 6.411 Chloroform 83 8.165 8.383 1,1,1-Trichloroethane 97 8.559 8.743 1,2-Dichloroethane 62 9.499 9.636 Carbon Tetrachloride 117 8.420 8.615 Benzene 78 9.209 9.358 1,2-Dichloropropane 63 10.578 10.691 Trichloroethene 95 10.021 10.135 Dibromomethane 93 10.473 10.575 Bromodichloromethane 83 10.659 10.773 cis-1,3-dichloropropene 75 11.332 11.457 Toluene 92 11.599 11.724 trans-1,3-Dichloropropene 75 12.109 12.234 1,1,2-Trichloroethane 83 12.294 12.408	Dichlorodifluoromethane	NAMS RT EXP RT REL RT RESPONSE Dichlorodifluoromethane 85 1.959 2.015 (0.208) 95742 Chloromethane 50 2.191 2.259 (0.233) 139966 Vinyl chloride 62 2.296 2.375 (0.244) 110019 Bromomethane 94 2.713 2.804 (0.289) 61028 Chloroethane 64 2.887 2.978 (0.307) 67672 Trichlorofluoromethane 101 3.073 3.175 (0.327) 116238 1,1-Dichloroethane 96 3.792 3.917 (0.403) 80070 Methylene Chloride 84 4.708 4.857 (0.501) 109611 trans-1,2-Dichloroethane 63 6.205 6.411 (0.600) 173912 Chloroform 83 8.165 8.383 (0.868) 165459 1,1,2-Trichloroethane 62 9.499 9.636 (1.000) 129710 Carbon Tetrachloride	Dichlorodifluoromethane 85 1.959 2.015 (0.208) 95742 50.0000 (1.000) 1.0000 (1.0000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.000) 1.0000 (1.0000) 1.00000 (1.0000) 1.0000 (1.0000) 1.00000 (1.0000) 1.00000 (1.0000) 1.00000 (1.0000) 1.00000 (1.0000) 1.00000 (1.0000) 1.00000 (1.0000) 1.00

							AMOUI	TS
		QUANT SIG					CAL-AMT	ON-COL
Сотро	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)
		====	====			=======	======	======
62	Tetrachloroethene	164	12.074	12.199	(0.909)	64245	50.0000	52.7
67	1,2-Dibromoethane	107	12.735	12.837	(1.000)	74046	50.0000	59.2
70	Chlorobenzene	112	13.222	13.313	(0.996)	238467	50.0000	51.8
72	1,1,1,2-Tetrachloroethane	131	13.280	13.371	(1.000)	84709	50.0000	51.4
71	Ethylbenzene	91	13.246	13.336	(0.997)	375621	50.0000	50.4(H)
77	Bromoform	173	13.768	13.858	(1.037)	50659	50.0000	60.9
76	Styrene	104	13.744	13.823	(1.035)	249322	50.0000	53.9
85	1,1,2,2-Tetrachloroethane	83	14.278	14.345	(0.961)	80261	50.0000	58.3
88	1,2,3-Trichloropropane	75	14.371	14.438	(0.967)	94986	50.0000	54.2(H)
100	1,2-Dibromo-3-Chloropropane	75	15.623	15.726	(1.052)	21083	50.0000	50.3
15	Acetone	58	4.778	4.927	(0.508)	66078	250.000	331
41	2-Butanone	72	8.791	8.952	(0.935)	64860	250.000	397
61	4-methyl-2-pentanone	43	12.051		(1.000)	412669	250.000	410
68	2-Hexanone	43	12.944	13.035	(0.975)	397513	250.000	469
29	Vinyl Acetate	43	6.843		(1.000)	40038	50.0000	19.8
10	Carbon Disulfide	76	3.827		(0.407)	278779	50.0000	45.1
	Acetonitrile	39	5.613		(0.597)	16279	500.000	520
	Acrolein	56	4.291		(0.456)	45028	250.000	450
27	Acrylonitrile	52	6.286		(0.668)	95955	250.000	265
	Chloroprene	53	6.286		(0.668)	116234	50.0000	45.7
	Allyl Chloride	41	4.523		(0.481)	109853	50.0000	46.6
57	1,4-Dioxane	88	10.879		(1.081)	9602	1000.00	1240 (TM)
	Propionitrile	54	9.244		(0.983)	80517	500.000	580
45	Ethyl Methacrylate	69	12.306		(1.000)	93140	50.0000	55.2
	Todomethane	142	3.989		(0.424)	96024	50.0000	67.0
	Isobutyl Alcohol	43	5.207		(0.554)	115710	1000.00	1450
	Methacrylonitrile	41	9.279		(0.986)	458586	500.000	602 (H)
	Methyl Methacrylate	41	10.845		(1.000)	63933	50.0000	65.2
	Pentachloroethane	117	14.591		(0.982)	54661	50.0000	41.3
	trans-1,4-Dichloro-2-Butene	53	14.382	14.461	(0.968)	21543	50.0000	57.7
	Xylenes (total)	106				410914	50.0000	149
	m+p-Xylenes	106	13.362		(1.006)	275989	100.000	99.4
	o-Xylene	106	13.710		(1.032)	134925	50.0000	50.0
	2-Chloroethylvinylether	63	11.285		(1.121)	889	50.0000	12.9(M)
	cis-1,2-Dichloroethene	96	7.481	7.711	(0.795)	102283	50.0000	49.2(M)
	1,2-Dichloroethylene (total)	96				194955	50.0000	97.3
	Pentafluorobenzene	168	9.406		(1.000)	149917	50.0000	_
	1,4-Difluorobenzene	114	10.067		(1.000)	224756	50.0000	(TM)
	Chlorobenzene-D5	117	13.211		(1.000)	184786	50.0000	(H)
	1,4-Dichlorobenzene-D4	152	14.858		(1.000)	75726	50.0000	
-	Dibromofluoromethane	113	8.548		(0.909)	77562	50.0000	42.9
•	1,2-Dichloroethane-D4	65	9.406		(1.000)	85870	50.0000	50.3(H)
	Toluene-D8	98	11.541		(1.000)	266318	50.0000	47.0
\$ 79	P-Bromofluorobenzene	95	14.139	14.218	(1.000)	112626	50.0000	51.1(H)

QC Flag Legend

T - Target compound detected outside RT window.
 M - Compound response manually integrated.
 H - Operator selected an alternate compound hit.

Data File: \\Target server\GG\chem\gcms-s.i\s021003.b\S5833.D Page 3

Report Date: 25-Mar-2003 10:32

Katahdin Analytical Services

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: qcms-s.i Calibration Date: 10-FEB-2003

Lab File ID: S5833.D Calibration Time: 12:25

Lab Smp Id: VSTD050S10C Analysis Type: VOA Level: LOW

Quant Type: ISTD Sample Type: WATER

Operator: JEY
Method File: \\Target_server\GG\chem\gcms-s.i\s021003.b\8260APIX.m

Test Mode:

Use Last Continuing Calibrator.

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=======================================	========	=======	========	========	======
43 Pentafluorobenzen	149917	74959	299834	149917	0.00
51 1,4-Difluorobenze	224756	112378	449512	224756	0.00
69 Chlorobenzene-D5	184786	92393	369572	184786	0.00
95 1,4-Dichlorobenze	75726	37863	151452	75726	0.00
İ					

	1	RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
		=======		=======	======
43 Pentafluorobenzen	9.41	8.91	9.91	9.41	0.00
51 1,4-Difluorobenze	10.07	9.57	10.57	10.07	0.00
69 Chlorobenzene-D5	13.21	12.71	13.71	13.21	0.00
95 1,4-Dichlorobenze	14.86	14.36	15.36	14.86	0.00
·					

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT. Data File: \\Target_server\GG\chem\goms-s.i\s021003.b\\S5833.D

Date : 10-FEB-2003 12:25

Client ID:

Sample Info: VSTD050S10C

Purge Volume: 5.0

Column phase: RTX-VMS

Instrument: gcms-s.i

Operator: JEY

Column diameter: 0.18

Data File: \\Target_server\GC\chem\gcms-s.i\s021003.b\S5833.D

Date : 10-FEB-2003 12:25

Client ID:

Sample Info: VSTB050S10C

Purge Volume: 5.0

Column phase: RTX-VMS

Instrument: gcms-s.i

Operator: JEY

Column diameter: 0.18

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CT0233

PO No: Sample Date: Received Date:

Extraction Date: 02/10/03 Analysis Date: 02/10/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WG1695-1 Client ID: WG1695-Blank

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQI	Adj.MDL
75-71-8	Dichlorodifluoromethane	υ	5	1.0	5	5	0.2
74-87-3	Chloromethane	υ	5	1.0	5	5	0.3
75-01-4	Vinyl chloride	U	2	1.0	2	2	0.1
74-83-9	Bromomethane	U	5	1.0	5	5	0.9
75-00-3	Chloroethane	U	5	1.0	5	5	0.3
75-69-4	Trichlorofluoromethane	U	5	1.0	5	5	0.2
75-35-4	1,1-Dichloroethene	σ	5	1.0	5	5	0.3
75-15-0	Carbon Disulfide	U	5	1.0	5	5	0.2
74-88-4	Iodomethane	U	10	1.0	10	10	0.2
107-02-8	Acrolein	σ	50	1.0	50	50	3
75-09-2	Methylene Chloride	J	0.9	1.0	5	5	0.3
67-64-1	Acetone	υ	10	1.0	10	10	3
78-83-1	Isobutyl Alcohol	σ	100	1.0	100	100	78
156-60-5	trans-1,2-Dichloroethene	υ.	5	1.0	-5	5	0.7
107-05-1	Allyl Chloride	U	10	1.0	10	10	1
75 - 05-8	Acetonitrile	U	50	1.0	50	50	6
126-99-8	Chloroprene	σ	10	1.0	10	10	2
126-98-7	Methacrylonitrile	υ	50	1.0	50	50	11
107-12-0	Propionitrile	U	50	1.0	50	50	16
75-34-3	1,1-Dichloroethane	Ū	5	1.0	5	5	0.1
107-13-1	Acrylonitrile	υ	10	1.0	10	10	0.8
108-05-4	Vinyl Acetate	. U	5	1.0	5	5	0.3
156-59-2	cis-1,2-Dichloroethene	U	5	1.0	5	5	0.5
540-59-0	1,2-Dichloroethylene (total)	ប	5	1.0	5	5	1
80-62-6	Methyl Methacrylate	U	10	1.0	10	10	1
67-66-3	Chloroform	U	5	1.0	5	5	0.2
56-23-5	Carbon Tetrachloride	υ	5	1.0	5	5	0.3
71-55-6	1,1,1-Trichloroethane	υ	5	1.0	5	5	0.7
78-93-3	2-Butanone	U	10	1.0	10	10	2
71-43-2	Benzene	U.	5	1.0	5	5	0.1
97-63-2	Ethyl Methacrylate	υ	10	1.0	10	10	0.9
107-06-2	1,2-Dichloroethane	υ	5	1.0	5	5	0.3
79-01-6	Trichloroethene	U	5	1.0	5	5	0.6
74-95-3	Dibromomethane	U	5	1.0	5	5	0.4
78-87-5	1,2-Dichloropropane	υ	5	1.0	5	5	0.2
75-27-4	Bromodichloromethane	U	5	1.0	5	5	0.2
10061-01-5	cis-1,3-dichloropropene	υ	5	1.0	5	5	0.4
123-91-1	1,4-Dioxane	σ	100	1.0	100	100	43
110-75-8	2-Chloroethylvinylether	U	5	1.0	5	5	0.5
108-88-3	Toluene	σ	5	1.0	5	5	0.2
108-10-1	4-methyl-2-pentanone	U	10	1.0	10	10	2
127-18-4	Tetrachloroethene	σ	5	1.0	5	5	0.4
10061-02-6	trans-1,3-Dichloropropene	ΰ	5	1.0	5	5	0.4

Page 01 of 02 S5835.D

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CTO233

PO No:

Sample Date:

Received Date:

Extraction Date: 02/10/03 Analysis Date: 02/10/03

Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WG1695-1

Client ID: WG1695-Blank

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQI	Adj.MDL	
79-00-5	1,1,2-Trichloroethane	U	5	1.0	5	5	0.3	
124-48-1	Dibromochloromethane	U	5	1.0	5	5	0.3	
106-93-4	1,2-Dibromoethane	σ	5	1.0	5	5	0.2	
591-78-6	2-Hexanone	U	10	1.0	10	10	2	
108-90-7	Chlorobenzene	ប	5	1.0	5	5	0.2	
100-41-4	Ethylbenzene	ប	5	1.0	5	5	0.1	
630-20-6	1,1,1,2-Tetrachloroethane	U	5	1.0	5	5	0.2	
1330-20-7	Xylenes (total)	J	0.2	1.0	5	5	0.2	
	m+p-Xylenes	J	0.2	1.0	5	5	0.2	
95-47-6	o-Xylene	U	5	1.0	5	5	0.2	
100-42-5	Styrene	U	5	1.0	5	5	0.3	
75-25-2	Bromoform	Ū	5	1.0	5	5	0.4	
110-57-6	trans-1,4-Dichloro-2-Butene	ប	10	1.0	10	10	0.5	
79-34-5	1,1,2,2-Tetrachloroethane	U	5	1.0	5	5	- 0.4	1.3.95 (1.55.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
96-18-4	1,2,3-Trichloropropane	U	5	1.0	² 5	5	0.9	Tanto automorphismo e
76-01-1	Pentachloroethane	σ	10	1.0	10	10	. 2	
96-12-8	1,2-Dibromo-3-Chloropropane	υ	5	1.0	5	5	0.6	
1868-53-7	Dibromofluoromethane		80%					
17060-07-0	1,2-Dichloroethane-D4		96%					
2037-26-5	Toluene-D8		91%					
460-00-4	P-Bromofluorobenzene		97%					

Page 02 of 02 S5835.D

Data File: \\Target_server\GG\chem\gcms-s.i\s021003.b\S5835.D Report Date: 26-Feb-2003 14:05 Page 5

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name:

Lab Smp Id: WG1695-1

Operator : JEY Sample Location:

Sample Matrix: WATER
Analysis Type: VOA
Inj Date: 10-FEB-2003 13:55

Client SDG: SDGa01256

Client Smp ID: WG1695-Blank Sample Date: Sample Point: Date Received:

Level: LOW

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/KG) ug/l

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	=======================================	======	============	=====

KATAHDIN ANALYTICAL SERVICES LAB CONTROL SAMPLE

Client:

Project: NAF KEY WEST CT0233

PO No: Sample Date: Received Date:

Extraction Date: 02/10/03 Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER

Lab ID: WG1695-2 Client ID: WG1695-LCS

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

	LCS	SAMPLE	LCS		QC.	
COMPOUND	SPIKE	CONC.	CONC.	%REC.	LIMITS	
Dichlorodifluoromethane	50	NA	40	80	4-217	
Chloromethane	50	NA	39	79	40-163	
Vinyl chloride	50	NA	44	89	55-151	
Bromomethane	50	NA	49	98	24-217	
Chloroethane	50	NA	49	99	69-134	
Trichlorofluoromethane	50	NA	48	96	71-147	
1,1-Dichloroethene	50	NA	43	87	78-136	
Carbon Disulfide	50	NA	45	90	70-136	
Iodomethane	50	NA	75	* 150	60-140	
Acrolein	250	NA	434	174	0-199	
Methylene Chloride	50	NA	41	82	52-115	
Acetone	50	NA	36	71	0-158	
Isobutyl Alcohol	1000	NA	1270	127	60-140	
trans-1,2-Dichloroethene	50	NA	45	90	84-131	2 1 1
Allyl Chloride	50	NA	48	97	60-140	
Acetonitrile	500	NA	507	101	53-141	
Chloroprene	50	NA	40	81	60-140	
Methacrylonitrile	500	NA	557	111	60-140	
Propionitrile 1,1-Dichloroethane	500	NA	531	106	60-140	
Acrylonitrile	50 250	NA NA	44 246	88 98	81-134	
Vinyl Acetate	50	NA NA	18	* 35	29-172 68-174	
cis-1,2-Dichloroethene	50	NA	44	87	84-123	
1,2-Dichloroethylene (total)	100	NA	89	89	84-131	
Methyl Methacrylate	50	NA	61	122	60-140	
Chloroform	50	NA	44	88	80-130	
Carbon Tetrachloride	50	NA	54	107	74-137	
1,1,1-Trichloroethane	50	NA	48	96	76-138	
2-Butanone	50	NA	70	140	49-154	
Benzene	50	NA	43	* 86	88-120	
Ethyl Methacrylate	50	NA	50	101	60-140	
1,2-Dichloroethane	50	NA	51	102	78-138	
Trichloroethene	50	NA	38	* 77	80-125	
Dibromomethane	50	NA	51	102	88-130	
1,2-Dichloropropane	50	NA	43	85	80-122	
Bromodichloromethane	50	NA	46	93	83-133	
cis-1,3-dichloropropene	50	NA	47	94	81-138	
1,4-Dioxane	1000	NA	930	93	60-140	
2-Chloroethylvinylether	50	NA	33	66	50-211	
Toluene	50	NA	45	90	88-121	
4-methyl-2-pentanone	50	NA	63	127	72-140	
Tetrachloroethene	50	NA	53	107	77-129	
trans-1,3-Dichloropropene	50	NA	50	100	81-149	
1,1,2-Trichloroethane	50	NA	46	92	82-126	
Dibromochloromethane	50	NА	52	104	80-133	

page 1 of 2 FORM III VOA-1

S5834.D

KATAHDIN ANALYTICAL SERVICES LAB CONTROL SAMPLE

Client:

Project: NAF KEY WEST CT0233

PO No:

Sample Date:

Received Date:

Extraction Date: 02/10/03 Analysis Date: 02/10/03 Report Date: 03/05/2003

Matrix: WATER

Lab ID: WG1695-2

Client ID: WG1695-LCS

SDG: CT0233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

	LCS	Sample	LCS		QC.
COMPOUND	SPIKE	CONC.	CONC.	%REC.	LIMITS
1,2-Dibromoethane	50	NA	50	100	88-127
2-Hexanone	50	NA	67	133	45-146
Chlorobenzene	50	NA	48	97	84-123
Ethylbenzene	50	NA.	49	98	84-131
1,1,1,2-Tetrachloroethane	50	NA	48	97	83-130
Xylenes (total)	150	NA	146	97	88-123
m+p-Xylenes	100	NA	97	97	88-122
o-Xylene	50	NA	49	99	90-123
Styrene	50	NA	50	100	87-137
Bromoform	50	NA	54	109	77-138
trans-1,4-Dichloro-2-Butene	50	NA	52	103	60-140
1,1,2,2-Tetrachloroethane	50	NA	48	96	81-131
1,2,3-Trichloropropane	50	NA	46	93	76-132
Pentachloroethane	50	NA	43	86	60-140
1,2-Dibromo-3-Chloropropane	50	NA	48	-95	61-136

KATAHDIN ANALYTICAL SERVICES MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/10/03 Analysis Date: 02/10/03

Report Date: 03/05/2003

Matrix: WATER

Lab ID: WG1695-3 & WG1695-4 Client ID: S9MW-5-0103MSD & S9MW-5-0103MSD

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

	MS	MSD	SAMPLE	MS	MSD	MS	MSD		%RPD	QC.
COMPOUND	SPIKE	SPIKE	CONC.	CONC.	CONC.	%REC.	%REC.	%RPD	LIMIT	LIMITS
Dichlorodifluoromethane	50	50	0.00	48	46	97	92	6	20	60-140
Chloromethane	50	50	0.00	40	39	80	77	3	20	60-140
Vinyl chloride	50	50	0.00	46	47	91	95	4	20	60-140
Bromomethane	50	50	0.00	15	20	* 30	* 41	* 32	20	60-140
Chloroethane	50	50	0.00	53	52	105	104	2	20	60-140
Trichlorofluoromethane	50	50	0.00	60	59	120	119	1	20	60-140
1,1-Dichloroethene	50	50	0.00	47	50	94	99	5	20	44-167
Carbon Disulfide	50	50	0.18	50	51	100	101	0.8	20	60-140
Iodomethane	50	50	0.00	43	62	87	123	* 35	20	60-140
Acrolein	50	50	0.00	496	465	* 992	* 930	6	20	60-140
Methylene Chloride	50	50	0.00	42	42	84	84	0.7	20	60-140
Acetone	50	50	0.00	25	23	* 51	* 46	9	20	60-140
Isobutyl Alcohol	1000	1000	0.00	1500	1470	* 150	* 147	2	20	60-140
trans-1,2-Dichloroethene	50	5 C	0.00	48	48	96	96	0.2	20	60-140
Allyl Chloride	50	50	0.00	67	72	134	* 144	7	20	60-140
Acetonitrile	500	500	0.00	580	608	116	122	5	20	60-140
Chloroprene	1000	1000	0.00	47	49	* 5	* 5	3	20	60-140
Methacrylonitrile	500	500	0.00	672	656	134	131	2	20	60-140
Propionitrile	500	500	0.00	643	638	129	128	0.8	20	60-140
1,1-Dichloroethane	50	50	0.00	48	48	95	97	2	20	60-140
Acrylonitrile	50	50	0.00	275	285	* 550	* 570	4	20	60-140
Vinyl Acetate	50	50	0.00	29	30	* 59	60	2	20	60-140
cis-1,2-Dichloroethene	50	50	0.00	45	47	90	94	4	20	60-140
1,2-Dichloroethylene (total)	100	100	0.00	93	95	93	95	2	20	60-140
Methyl Methacrylate	50	50	0.00	74	74	* 149	* 147	1	20	60-140
Chloroform	50 ·	50	0.00	49	48	98	96	2	20	60-140
Carbon Tetrachloride	50	50	0.00	62	62	124	123	0.3	20	60-140
1,1,1-Trichloroethane	50	50	0.00	54	54	108	107	0.6	20	60-140
2-Butanone	50	50	0.00	71	70	* 141	140	1.0	20	60-140
Benzene	50	50	2.9	50	50	94	95	0.8	20	64-140
Ethyl Methacrylate	50	50	0.00	64	62	127	124	2	20	60-140
1,2-Dichloroethane	50	50	0.00	58	56	116	112	4	20	60-140
Trichloroethene	50	50	0.00	43	42	87	83	4	20	62-134
Dibromomethane	50	50	0.00	55	54	110	108	2	20	60-140
1,2-Dichloropropane	50	50	0.00	48	47	95	95	0.8	20	60-140
Bromodichloromethane	50	50	0.00	53	52	105	103	2	20	60-140
cis-1,3-dichloropropene	50	50	0.00	50	50	101	101	0.2	20	60-140
1,4-Dioxane	50	50	0.00	1650	1920	* 3300	* 3840	15	20	60-140
2-Chloroethylvinylether	50	50	0.00	50	0.0	100	* 0		20	60-140
Toluene	50	50	0.00	50	51	101	102	2	20	65-142
4-methyl-2-pentanone	50	50	0.00	72	70	* 144	140	3	20	60-140
Tetrachloroethene	50	50	0.00	51	53	102	106	4	20	60-140
trans-1,3-Dichloropropene	50	50	0.00	55	54	111	109	2	20	60-140
1,1,2-Trichloroethane	50	50	0.00	51	50	103	100	3	20	60-140
Dibromochloromethane	50	50	0.00	55	56	111	112	1	20	60-140
									•	

page 1 of 2

FORM III VOA-1

S5843.D & S5844.D

KATAHDIN ANALYTICAL SERVICES MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Client: Tetra Tech NUS, Inc Project: NAF KEY WEST CT0233

PO No:

Sample Date: 02/01/03 Received Date: 02/04/03 Extraction Date: 02/10/03

Analysis Date: 02/10/03

Report Date: 03/05/2003

Matrix: WATER

Lab ID: WG1695-3 & WG1695-4

Client ID: S9MW-5-0103MS & S9MW-5-0103MSD

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1695

Units: ug/l

	MS	MSD	SAMPLE	MS	MSD	MS	MSD		%RPD	QC.
COMPOUND	SPIKE	SPIKE	CONC.	CONC.	CONC.	%REC.	%REC.	%RPD	LIMIT	LIMITS
1,2-Dibromoethane	50	50	0.00	53	53	107	106	0.6	20	60-140
2-Hexanone	50	50	0.00	61	58	121	116	4	20	60-140
Chlorobenzene	50	50	0.00	51	51	102	103	0.6	20	68-140
Ethylbenzene	50	50	2.5	54	55	103	104	1	20	60-140
1,1,1,2-Tetrachloroethane	50	50	0.00	50	50	101	100	0.4	20	60-140
Xylenes (total)	150	150	0.00	152	155	101	103	2	20	60-140
m+p-Xylenes	100	100	0.00	101	104	101	104	3	20	60-140
o-Xylene	50	50	0.00	51	52	102	103	1.0	20	60-140
Styrene	50	50	0.00	52	51	103	103	0.8	20	60-140
Bromoform	50	50	0.00	57	57	114	114	0.2	20	60-140
trans-1,4-Dichloro-2-Butene	50	50	0.00	59	59	119	119	0.0	20	60-140
1,1,2,2-Tetrachloroethane	50	50	0.00	54	53	107	105	2	20	60-140
1,2,3-Trichloropropane	50	50	0.00	53	52	106	105	2	20	60-140
Pentachloroethane	50	50	0.00	51	55	1.03	110	6	20	60-140
1,2-Dibromo-3-Chloropropane	50	50	0.00	53	56	106	111	. 5	20	60-140

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): S5833

Date Analyzed: 02/10/03

Instrument ID: GCMS-S

Time Analyzed: 1225

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

		IS1 (PFB)	i -	IS2 (DFB)	1	IS3 (CBZ)	<u>. </u>
•	i	AREA #	RT #	AREA #	RT #	AREA #	RT #
			======			========	=====
12 HOUR STD		149917	9.41	224756	10.07	184786	13.21
UPPER LIMIT		299834	9.91	449512	10.57	369572	13.71
LOWER LIMIT		74959	8.91	112378	9.57	92393	12.71
					, 	=======================================	=======
CLIENT SAMPLE	LAB SAMPLE				i	i	i
ID	ID .	1		ĺ	i	i	i
=======================================				=========	========		=======================================
01 WG1695-LCS	WG1695-2	151219	9.41	232588	10.07	176321	13.21
02 WG1695-BLANK	WG1695-1	154793	9.41	227428	10.07	180689	13.20
03 S9MW-21-0103	WT0246-5	146827	9.42	223112	10.07	174042	13.21
04 S1MW-5-0103	WT0246-9	136937	9.41	213438	10.07	168345	13.21
05 S9MW-14-0103-DL	WT0246-3.	137694	9.41	204089	10.07	159873	13.22
06 S9MW-15-0103-DL	WT0246-4	132715	9.42	202937	10.08	160062	13.21
07 S9MW-24-0103-DL	WT0246-6	131106	9.42	202550	10.08	163404	13.21
08 0103-DUP-06-DL	WT0246-8	132423	9.42	198558	10.07	157781	13.22
09 S9MW-22-0103-DL	WT0246-13	131717	9.42	195714	10.08	157095	13.21
10 S9MW-5-0103MS	WG1695-3	131815	9.42	198291	10.08	156946	13.21
11 S9MW-5-0103MSD	WG1695-4	141220	9.42	212391	10.08	166799	13.21
12	l[1		1	1	
13	ll				1	I	
14	ll					1	
15					l		
16	l <u></u> .				[
17	ll		i			1	
18	ll	l			1		I
19		i	l		1	f	
20		!				I	

IS1 (PFB) = Pentafluorobenzene

(DFB) = 1,4-Difluorobenzene (CBZ) = Chlorobenzene-D5 IS2

IS3

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 1 of 2

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): S5833 Date Analyzed: 02/10/03

Instrument ID: GCMS-S

Time Analyzed: 1225

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

12 HOUR STD									
12 HOUR STD	1			IS4 (DCB)	1			1	
12 HOUR STD				AREA #	RT #	AREA #	RT #	AREA #	RT #
UPPER LIMIT			=========		======	========		=========	======
CLIENT SAMPLE LAB SAMPLE	1	12 HOUR STD		75726	14.86		. [İ	İ
CLIENT SAMPLE LAB SAMPLE ID ID ID ID ID ID ID I	- 1	UPPER LIMIT		151452	15.36				i
CLIENT SAMPLE	- 1	LOWER LIMIT		37863	14.36				i
ID	ļ								
====================================	1	CLIENT SAMPLE	LAB SAMPLE			I	İ	Í	Í
01 WG1695-LCS	1	ID	ID			l	Ì	i	İ
02 WG1695-BLANK	1		=======================================		========				
03 S9MW-21-0103 WT0246-5 70690 14.87	01	WG1695-LCS	WG1695-2	78386	14.86		1	Ì	1
04 S1MW-5-0103 WT0246-9 68138 14.86	02	WG1695-BLANK	WG1695-1	75584	14.86		I		
05 S9MW-14-0103-DL	03	S9MW-21-0103	WT0246-5	70690	14.87		1	1	i
06 S9MW-15-0103-DL	04	S1MW-5-0103	WT0246-9	68138	14.86	l	I	1	
07 S9MW-24-0103-DL	05	S9MW-14-0103-DL	WT0246-3	67766	14.86	· · · · · · · · · · · · · · · · · · ·		1	1
08 0103-DUP-06-DL	.06	S9MW-15-0103-DL	WT0246-4	66004	14.87		1 .	1 .	· · ·
09 S9MW-22-0103-DL	07	S9MW-24-0103-DL	WT0246-6	68308	14.87		1	1	
10 S9MW-5-0103MS WG1695-3 69137 14.87	08	0103-DUP-06-DL	WT0246-8	65037	14.86		1		,
11 S9MW-5-0103MSD WG1695-4 72453 14.87	09	S9MW-22-0103-DL	WT0246-13	66470	14.87				
12 13 14 15 16 17 18 19	10	S9MW-5-0103MS	WG1695-3	69137	14.87		1		
13	11	S9MW-5-0103MSD	WG1695-4	72453	14.87				
14 15 16 17 18 19	12		l					·	·
15	13		ll						
16 17 18 19	14			[
17	15		lI					 	
18	16								
19	17			1					
·	18								
201	19								i i
	20								

IS4 (DCB) = 1,4-Dichlorobenzene-D4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 2 of 2

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: FB077

BFB Injection Date: 02/05/03

Instrument ID: GCMS-F

BFB Injection Time: 0908

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	15 0 40 00 C	=======================================
50	15.0 - 40.0% of mass 95	24.6
75	30.0 - 60.0% of mass 95	55.2
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	5.6
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Greater than 50.0% of mass 95	58.4
175	4.0 - 9.0% of mass 174	4.9 (8.4)1
176	95.0 - 101.0% of mass 174	56.5 (96.8)1
177	5.0 - 9.0% of mass 176	2.9 (5.1)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	T 775	,		
	-	LAB	LAB	DATE	TIME
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		==========	========	========	
01		VSTD050F05A	F9107	02/05/03	0948
02		VSTD005F05A	F9109	02/05/03	1116
03		VSTD001F05A	F9110	02/05/03	1149
04	İ	VSTD200F05A	F91 11	02/05/03	1222
05		VSTD100F05A	F9112	02/05/03	1255
06		VSTD020F05A	F9113	02/05/03	1327
07				1-, 00, 00	1327
08					
09					
10					
11					
12					
13					[
14					
15					
16					
17					
18					
19					
20				i	
21					
22					
page	1 of 1	•		······································	

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-F

Calibration Date(s): 02/05/03 02/05/03

Column · RTX-VMS

ID: 0.18 (mm)

Calibration Time(s): 0948

1327

LAB FILE ID:

RF1: F9110

RF5: F9109 RF200: F9111 PF20 - F9113

RF50: F9107 RF100: F9112

COEFFICENTS RSD MAX &RSDI | RF1 | RF5 | RF20 | RF50 | RF100 | RF200 | CURVE | A0 | A1 | A2 | OR R^2 | OR R^2 | _ | 0.741 | 0.868 | 0.867 | 0.826 | 0.784 | 0.700 | AVRG | _____ | 0.79762 | _____ | 8.589 | 15.000 | |Vinvl chloride __1 Bromomethane 2793 | 12278 | 45758 | 55033 | 211140 | 324720 | 20RDR | 0.12272 | 1.58159 | 0.75638 | 0.97526 | 0.99000 | <-2534 | 11715 | 51871 | 104100 | 224380 | 355740 | 20RDR | 3.e-002 | 1.52339 | 0.63412 | 0.99676 | 0.99000 | __|0.66319|____| 9.312 | 15.000 | Tertiary-butyl alcohol____ 8961 9984| 41690| 49639| 195360| 411550|20RDR|0.35634 |12.9222 |-1.1708 |0.98383 |0.99000 |<-1,1-Dichloroethene_ Freon-113 5367] 33724| 91999| 228390| 358740|20RDR|0.10365 |1.51349 |0.58270 |0.99282 |0.99000 | - 1 3961 - 1 Methylene Chloride Acetone 5163 | 16651 | 68239 | 73491 | 349810 | 647570 | 20RDR | 0.60863 | 6.40324 | 0.12281 | 0.97616 | 0.99000 | <-- 1 2642| 38943| 156200| 357250| 750900|1443200|LINR |-0.2474 |12.5899 |_____|0.99960 |0.99000 | Isobutyl Alcohol____ |trans-1,2-Dichloroethene__ | 0.654 | 0.628 | 0.600 | 0.574 | 0.552 | 0.518 | AVRG | ____ | 0.58765 | ___ | 8.522 | 15.000 | | 10131| 35672| 147420| 325620| 695060|1175700|LINR|-8e-002|0.76377|_____0.99364|0.99000| |Methyl tert-butyl ether | 2.371 | 2.304 | 2.310 | 2.246 | 2.198 | 2.084 | AVRG | | | 2.25196 | | 4.507 | 15.000 | 6827| 31348| 63077| 148170| 276870|LINR |-0.1531 |32.7422 | 0.99783 |0.99000 | 32381 Di-isopropyl ether _ 2.889 3.012 3.219 3.245 2.969 2.847 AVRG | 3.02999 | 5.512 | 15.000 | _|AVRG |__ 1 __1_ |Methacrylonitrile____ |Acrylonitrile____| 5753| 33488| 132680| 280660| 666150|1297400|LINR |1e-002 |3.50933 |____|0.99779 |0.99000 | _ | 1.634| 1.529| 1.640| 1.504| 1.491| 1.579|AVRG | ____| 1.56257 | ____| 4.142 | 15.000 | |cis-1,2-Dichloroethene___| 0.682| 0.698| 0.639| 0.646| 0.590| 0.545|AVRG |____|0.63354 |____| 9.049 | 15.000 | |1,2-Dichloroethylene (total)|_ ___!_ _|_ _1___ ___|AVRG |___ _|___| 1 0.000 i |Methyl Methacrylate____| 25152 | 97538 | 234040 | 509700 | 1000400 | LINR | 2e-002 | 1.42574 | _____ | 0.99906 | 0.99000 | 7310 |2,2-Dichloropropane | 1.185| 1.388| 1.322| 1.239| 1.115| 1.092|AVRG | | |1.22333 | | 9.507 | 15.000 | |Bromochloromethane | 0.240| 0.290| 0.280| 0.254| 0.243| 0.234|AVRG | | 0.25688 | 9.014 | 15.000 | |Carbon Tetrachloride | 0.635| 0.659| 0.661| 0.624| 0.586| 0.586| AVRG | | | 0.62530 | | 5.365 | 15.000 | |Tetrahydrofuran____ ____ 8.068 | 15.000 | 2-Butanone 2208 | 14175 | 53382 | 87072 | 272200 | 540390 | LINR | 0.38808 | 8.28801 | _ - 1 0.99084 | 0.99000 | 1.392 | 1.648 | 1.561 | 1.482 | 1.351 | 1.350 | AVRG | | | | | | | | | | | | _ 8.330 | 15.000 | 6695 l 6782 13358 __| 27824| 45475|LINR |-0.7917 |23.5864 |____|0.99148 |0.99000 |<-Ethyl Methacrylate 0.606 | 0.655 | 0.675 | 0.603 | 0.626 | 0.651 AVRG | | 0.63599 | ___ 4.567 | 15.000 | Methyl Acrylate 6011 2821 7440 | 21053 | 42326 | 81258 | LINR | -3e-003 | 17.5891 | ___ 0.99977 [0.99000]

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-F

Calibration Date(s): 02/05/03 02/05/03

Column: RTX-VMS ID: 0.18 (mm) Calibration Time(s): 0948 1327

LAB FILE ID:

RF1: F9110

RF5: F9109

RF20: F9113

RF50: F9107 RF100: F9112 RF200: F9111

	1	[! !		1	! !	l	1	•	OEFFICEN	rs	*RSD	MAX RS	DΙ
	COMPOUND	RF1			•	RF100		•	A0 =======	l A1] A2	OR R^2		•
	Tertiary-amyl methyl ether	2.231						•	=======	2.11120	-}======= 	= ====== 3.319	15.000	•
	1,2-Dichloroethane	0.853	0.948	0.914	0.879			•		10.88029	<u> </u>	4.861	•	•
	Trichloroethene	4272	16990	65404		303980		•	-6e-002				0.99000	•
	Dibromomethane	0.338	0.281					-		0.28457	i	9.946	•	•
	1,2-Dichloropropane	0.422	0.433	0.454	0.438	0.401		•		0.42547	1	-:	15.000	•
	Bromodichloromethane	0.644	0.658	0.688	0.677	0.612		•		0.65118	i	4.479	•	•
	cis-1,3-dichloropropene	0.786	0.715	0.760	0.718	0.682	0.704	AVRG	1	0.72760	i	5.276	•	•
	1-Chlorohexane	436	1101	5199	15831	27650	49694	LINR	-6e-002	28.5507	i	- '	0.99000	•
	1,4-Dioxane	!I	1	i	i	i		AVRG	1		1	1	0.000	•
	2-Chloroethylvinylether			0.011	0.012	0.009	0.012	AVRG	1	le-002	1	12.357		•
	Toluene	0.816	0.978	0.947	0.891	0.837	0.850	AVRG		0.88667	i	•••	15.000	•
	4-methyl-2-pentanone	0.684	0.705	0.671	0.592	0.669	0.718	AVRG		0.67322	1		15.000	-
مها الإسلام المالات	[Tetrachloroethene	0.266	0.351	0.321	0.319	0.298	0.283	•		0.30641	1	••	15.000	•
Mechy . ex	trans-1,3-Dichloropropene	0.801	0.698	0.749		0.666				071681	1.774		15.000	•
	1,1,2-Trichloroethane	0.303	0.303	0.299	0.280	0.279	0.285	AVRG		0.29152	1 .		15.000	•
	Dibromochloromethane	0.549	0.464	0.511	0.500	0.464	0.477	AVRG		0.49413)		15.000	•
	1,3-Dichloropropane	0.785	0.796	0.795	0.785	0.721	0.730	AVRG		0.76867	i .	.,	15.000	•
	1,2-Dibromoethane	0.424	0.390	0.385	0.390	0.370	0.394	AVRG		0.39206	!		15.000	•
	2-Hexanone	22759	119250	439600	785560	2311200	4827100	LINR	0.44020	•	i .		0.99000	•
	Chlorobenzene	1.011		1.171			1.034			1.08594			15.000	•
	Ethylbenzene	2.295	2.272	2.250	2.088	1.978	1.977	AVRG		2.14336	·——		15.000	
	1,1,1,2-Tetrachloroethane	0.392	0.493	0.442	0.430	0.400	0.394	AVRG		0.42538	i	•	15.000	•
	Xylenes (total)	1				i	i	AVRG					0.000	•
	m+p-Xylenes	0.769	0.826	0.801	0.758	0.709	0.713	AVRG		0.76281	 	6.129	15.000	•
	o-Xylene	0.747	0.742	0.772	0.734	0.667	0.678	AVRG		0.72338	<u> </u>	•	15.000	•
	Styrene	1.256	1.292	1.313	1.322	1.193	1.190	AVRG		1.26094	i	4.625	•	-
	Bromoform	0.351	0.316]	0.333	0.344	0.342	0.348	AVRG		0.33921		3.809	•	•
	Isopropylbenzene	3.794	4.164	4.258	3.973	3.499	3.563	avrg		3.87530		8.033	•	•
	cis-1,4-Dichloro-2-Butene	0.776	0.494	0.672	0.662	0.623	0.645	avrg J		0.64538	1		15.000	
	trans-1,4-Dichloro-2-Butene_	0.647	0.630	0.689	0.637	0.614	0.595	AVRG	,,	0.63547	i	•	15.000	•
	Bromobenzene	0.885	1.052	0.922	0.951	•	0.868	-		0.92317	i	•	15.000	•
	N-Propylbenzene	5.392	5.241	5.186	4.955	4.481	4.422	•		4.94615			15.000	-
	2-bromo-1-chloropropane	1006	3001	12405	17355	48653	95213			6.66171	1	0.99274	•	•
	1,1,2,2-Tetrachloroethane	4036	17355	65856	161210	326640		•	-2e-002			0.99953	-	•
	1,3,5-Trimethylbenzene	3.774	3.936	3.839	3.547	3.223	3.210			3.58824	!		15.000	•
	2-Chlorotoluene	3.713	4.059	3.896	3.693	3.278	3.338	•		3.66281	' 		15.000	•
	1,2,3-Trichloropropane	2.224	1.857	1.775	1.710	1.686	1.570			1.80356	· ——— ·		1 15.000	•
	4-Chlorotoluene	3.370	3.846	3.592	3.315	3.033	3.067	•		3.37041	'i		15.000	•
	tert-Butylbenzene	3.657	3.617	3.458	3.161	2.940	2.953	•		3.29768	· ·		15.000	-
	Pentachloroethane	0.958	0.868	0.832	0.881	0.703	0.805	•		0.84133	'		15.000	•
	1,2,4-Trimethylbenzene	3.863	4.124	3.955	3.824	3.432	3.406	•		3.76724	''		15.000	•
	P-Isopropyltoluene_	3.077	2.836	2.761	2.922	2.741	2.423	•		2.79322	 	7.832	15.000	•
	1,3-Dichlorobenzene	1.862	1.842	1.715	1.644	1.515	1.486	•••		1.67723	'		15.000	•
	1,4-Dichlorobenzene	1.698	1.865	1.752	•	1.493	1.555	•		1.67157	 [
		1	1	1		1	1		!·	V/13/]	'	0.023	15.000	
	· ·					1_						,	r	ı

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-F

Calibration Date(s): 02/05/03 02/05/03

Column: RTX-VMS ID: 0.18 (mm) Calibration Time(s): 0948 1327

LAB FILE ID:

RF1: F9110

RF5: F9109

RF20: F9113

RF50: F9107

RF100: F9112

RF200: F9111

1	ı		1	[١	l		l	1	COEFFIC	ENT	S	%RSD	MAX %RSD
COMPOUND	ı	RF1	t	RF5	RF20	RF50	RF100	RF200	CURVE	A0	A	Ł	A2	OR R^2	OR R^2
	==		= =	======		======	======		====	======			======	= ======	= ======
N-Butylbenzene	I	3.069)	3.597	3.478	3.052	2.809	2.787	AVRG	I	3.132	208	I	_ 10.777	15.000
sec-Butylbenzene	1	4.488	3	4.341	4.205	3.828	3.510	3.530	AVRG	1	3.983	378	l	_ 10.560	15.000
1,2-Dichlorobenzene	١	1.694	1	1.707	1.685	1.590	1.423	1.449	AVRG	I	1.591	L37	l	_ 8.028	15.000
1,2-Dibromo-3-Chloropropane_	1	1969)	10096	37363	79124	165210	325200	LINR	1-5e-00	2 1.96	L34	I	_ 0.99944	0.99000
1,3,5-Trichlorobenzene	ì	1.082	2	0.962	0.965	0.813	0.804	0.812	AVRG	1	_ 0.906	25	I	_ 12.640	15.000
Hexachlorobutadiene	ì	2757	7	10124	34795	67147	139990	256860	LINR	-0.118	1 2.492	211	l	_ 0.99785	0.99000
1,2,4-Trichlorobenzene		3763	3	19518	71659	161370	326000	639130	LINR	-5e-00	2 0.997	714	l	_ 0.99949	0.99000
1,2,3-Trimethylbenzene	Ì	2.215	5	2.467	2.456	2.393	2.276	2.368	AVRG	I	2.362	256	l	_ 4.220	15.000
Naphthalene		10447	7 [46596	158800	332890	744400	1443500	LINR	-4e-00	2 0.440	030	l	_ 0.99945	0.99000
1,2,3-Trichlorobenzene		3532	2	18142	62134	131290	287160	543940	LINR	-6e-00	2 1.167	756	l	_ 0.99929	0.99000
======================================	==		- -									===		= ======	
Dibromofluoromethane	Ì	0.788	3	0.636	0.689	0.682	0.595	0.596	AVRG	l	_ 0.664	139	l	_ 10.915	15.000
1,2-Dichloroethane-D4		1.567	11:	1.170	1.107	1.045	1.037	1,037	AVRG	1	1.160	62	<u> </u>	_ 17.726	15.000
Toluene-D8		1.289	Į,	1.220	1.266	1.210	1.126	1.187	AVRG	I	_ 1.216	44		4.781	15.000
P-Bromofluorobenzene		0.695	5	0.605	0.605	0.586	0.564	0.583	AVRG	l	0.606	49	<u></u>	7.604	15.000
	_		.1_		1				l	1	_1			I	_1

| Average %RSD test result.

| Calculate Average %RSD: 7.986255646 | Maximum Average %RSD: 15.00000000

Note: Passes Average %RSD Test.

FORM 2 WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

								. .
	CLIENT	LAB		SMC1			SMC4	!!
	SAMPLE ID	SAMPLE	ID	DBF#	DCA#	TOL#	BFB#	OUT
		=======	======	====	====	====	====	===
	WG1669-LCS	WG1669-2		94	93	98	96	0
	WG1669-BLANK	WG1669-1		103	101	99	97	0
	FC-MW-20R-0103	WT0233-2		86	72	97	82	0
04	FC-MW-05-0103	WT0233-3		88	71	96	84	0
05	WG1670-LCS	WG1670-2		97	95	98	97	0
06	WG1670-BLANK	WG1670-1		99	98	101	97	0
07	FC-MW-06-0103	WT0233-1		98	88	99	92	0
08								
09								— i
10							i	i — i
11						i		i
12								
13				i				
14				i				
15								
16								
17		-						
18								¦
19							i	—-i
20						i	!	
21					¦	i	:	
22		·						
23						—-i	!	¦
24				—		;		
25								
26								
27								
28			[
20			I	!			!	

SMC1 (DBF) = Dibromofluoromethane (75-129)
SMC2 (DCA) = 1,2-Dichloroethane-D4 (65-135)
SMC3 (TOL) = Toluene-D8 (82-120)
SMC4 (BFB) = P-Bromofluorobenzene (69-125)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: FB078

BFB Injection Date: 02/05/03

Instrument ID: GCMS-F

BFB Injection Time: 1523

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		= ==========
50	15.0 - 40.0% of mass 95	29.4
75	30.0 - 60.0% of mass 95	54.5
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.5
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Greater than 50.0% of mass 95	59.3
175	4.0 - 9.0% of mass 174	4.0 (6.7)1
176	95.0 - 101.0% of mass 174	59.2 (100.0)1
177	5.0 - 9.0% of mass 176	3.1 (5.3)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		 			
	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	==========	=======	========	=======
01		VSTD050F05C	F9115	02/05/03	1545
02	WG1669-LCS	WG1669-2	F9117	02/05/03	1725
03	WG1669-BLANK	WG1669-1	F9119	02/05/03	1831
04	FC-MW-20R-0103	WT0233-2	F9130	02/06/03	0033
05	FC-MW-05-0103	WT0233-3	F9131	02/06/03	0105
06					i
07					
80					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
1					

page 1 of 1

FORM 7B VOLATILE CALIBRATION VERIFICATION SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GCMS-F Calibration Date: 02/05/03 Time: 1545

Lab File ID: F9115 Init. Calib. Date(s): 02/05/03 02/05/03

Init. Calib. Times: 0948 1327

GC Column: RTX-VMS ID: 0.18 (mm)

	1	RRF50.000		1		1	Ī
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
= = = = = = = = = = = = = = = = = = = =	========		,	-====	-=====	=======	====
m+p-Xylenes			0.6838700		-10.37	1	AVRG
trans-1,2-Dichloroethene			0.5113300		-13.04	1	AVRG
cis-1,2-Dichloroethene			0.5691300		-10.09	İ	AVRG
o-Xylene	0.7230000	0.6689600	0.6689600	0.01	-7.47	İ	AVRG
Chloromethane	1.1290000	1.0454000	1.0454000	0.1	-7.40	İ	AVRG
Vinyl chloride	0.8980000	0.8421100	0.8421100	0.01	-6.22	20.00	AVRG
Bromomethane	46.382000	50.000000	0.4232500	0.01	-7.24		i 2RDR i
Chloroethane	41.180000	50.000000	0.4401700	0.01	-17.64	İ	2RDR
1,1-Dichloroethene	0.5290000	0.4679900	0.4679900	0.1	-11.53	20.00	AVRG
Methylene Chloride	45.471000	50.000000	0.5592200	0.01	-9.06	•	LINR
Methyl tert-butyl ether			2.1574000		-4.20	E	AVRG
1,1-Dichloroethane			1.2731000			l .	AVRG
1,2-Dichloroethylene (total)			0.5402300		!		AVRG
Chloroform	:	•	1.2351000	0.01	-8.85	1	
Carbon Tetrachloride	0.6250000	0.5617200	0.5617200	0.01			AVRG
1,1,1-Trichloroethane	1.2230000	1.0955000	1.0955000			1	AVRG
Benzene	:	!	1.3052000				AVRG
1,2-Dichloroethane	0.8800000	0.8199800	0.8199800				AVRG
Trichloroethene	45.054000	50.000000	0.3814000	0.01		•	LINR
1,2-Dichloropropane			0.3867700	0.01	-9.21	20.00	
Bromodichloromethane		0.6066400		0.01	-6.81		AVRG
cis-1,3-dichloropropene	0.7280000	0.6613300	0.6613300	0.01	-9.16		AVRG
2-Chloroethylvinylether	1.1e-002	1.2e-002	!	0.01	9.09		AVRG
Toluene	0.8860000	0.7957900		0.01	-10.18	20.00	
Tetrachloroethene			0.2784100	0.01	-9.02		AVRG
trans-1,3-Dichloropropene			0.6458200	0.01	-9.93		AVRG
1,1,2-Trichloroethane			0.2756600	0.01	-5.60		AVRG
Dibromochloromethane		0.4818900		0.01	-2.45		AVRG
Chlorobenzene		1.0297000		0.3	-5.18	i	AVRG
				5.5	3.10	İ	11010
							

page 1 of 2

FORM VII PEST

FORM 7B VOLATILE CALIBRATION VERIFICATION SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-F Calibration Date: 02/05/03 Time: 1545

Init. Calib. Times: 0948 1327

GC Column: RTX-VMS ID: 0.18 (mm)

ļ			RRF50.000	1]		1	1
	COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	ĺ
ļ		AMOUNT	TRUDOMA	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE	ļ.
	#B====================================	=======	=======	=======	-====	======	========	i====	İ
:				1.9624000	0.01	-8.43	20.00	AVRG	İ
:				0.6789000	0.01	0.00		AVRG	<
				0.3366100	0.1	-0.70		AVRG	ĺ
!	1,1,2,2-Tetrachloroethane	51.160000	50.000000	1.0904000	0.3	2.32		LINR	ĺ
				=======	====	======	=======	====	i
	Dibromofluoromethane			0.6662200	0.01	0.33		AVRG	į
	1,2-Dichloroethane-D4			1.1347000	0.01	-2.18		AVRG	i
	Toluene-D8			1.2254000	0.01	0.77		AVRG	ĺ
	P-Bromofluorobenzene	0.6060000	0.6153200	0.6153200	0.01	1.54		AVRG	
1			<u> </u>					l	I
and the second s	n na fan de de de de de de de de de de de de de				***	*			

page 2 of 2

FORM VII PEST

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CT0233

PO No: Sample Date: Received Date:

Extraction Date: 02/05/03 Analysis Date: 02/05/03

Analysis Date: 02/05/03 Report Date: 02/27/2003

Matrix: WATER % Solids: NA

Lab ID: WG1669-1

Client ID: WG1669-BLANK

SDG: CTO233-4 Extracted by: JSS

Extraction Method: SW846 5030

Analyst: JSS

Analysis Method: SW846 8260B

Lab Prep Batch: WG1669

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQ	L Adj.MDL
	m+p-Xylenes	σ	2	1.0	2	2	0.5
156-60-5	trans-1,2-Dichloroethene	U	1	1.0	1	1	0.5
156-59-2	cis-1,2-Dichloroethene	U	1	1.0	1	1	0.5
95-47-6	o-Xylene	U	1	1.0	1	1	0.5
74-87-3	Chloromethane	U	2	1.0	2	2	0.5
75-01-4	Vinyl chloride	U	2	1.0	2	2	0.5
74-83-9	Bromomethane	U	2	1.0	2	2	0.5
75-00-3	Chloroethane	U	2	1.0	2	2	0.5
75-35-4	1,1-Dichloroethene	U	1	1.0	1	1	0.5
75-09-2	Methylene Chloride	U	2	1.0	2	2	0.5
1634-04-4	Methyl tert-butyl ether	U	2	1.0	2	2	0.3
75-34-3	1,1-Dichloroethane	U	1	1.0	1	1	0.5
540-59-0	1,2-Dichloroethylene (total)	U	2	1.0	2	2	0.5
67-66-3	Chloroform	. U	. 1	1.0	-1	1	0.5
56-23-5	Carbon Tetrachloride	U	1	1.0	1	7 5 12 1 1	0.5
71-55-6	1,1,1-Trichloroethane	U	ı	1.0	1	. 1	0.5
71-43-2	Benzene	ΰ	1	1.0	1	1	0.5
107-06-2	1,2-Dichloroethane	บ	1	1.0	1	1	0.5
79-01-6	Trichloroethene	υ	1	1.0	1	1	0.5
78-87-5	1,2-Dichloropropane	U	1	1.0	1	1	0.5
75-27-4	Bromodichloromethane	υ	1	1.0	1	1	0.5
10061-01-5	cis-1,3-dichloropropene	Ü	1	1.0	1	1	0.5
110-75-8	2-Chloroethylvinylether	υ	1	1.0	1	1	0.5
108-88-3	Toluene	U	1	1.0	1	1	0.2
127-18-4	Tetrachloroethene	U	1	1.0	1	1	0.5
10061-02-6	trans-1,3-Dichloropropene	ប	1	1.0	1	1	0.5
79-00-5	1,1,2-Trichloroethane	σ	1	1.0	1	1	0.5
124-48-1	Dibromochloromethane	Ū	1	1.0	1	1	0.5
108-90-7	Chlorobenzene	υ	1	1.0	1	1	0.5
100-41-4	Ethylbenzene	ប	1	1.0	1	1	0.5
1330-20-7	Xylenes (total)	.U	3	1.0	3	3	0.5
75-25-2	Bromoform	U	1	1.0	1	1	0.5
79-34-5	1,1,2,2-Tetrachloroethane	U	1	1.0	1	1	0.5
1868-53-7	Dibromofluoromethane		103%				
17060-07-0	1,2-Dichloroethane-D4		101%				
2037-26-5	Toluene-D8		99%				
460-00-4	P-Bromofluorobenzene		97%				

Page 01 of 01 F9119.D

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): F9115

Date Analyzed: 02/05/03

Instrument ID: GCMS-F

Time Analyzed: 1545

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

,						·	
Į	ļ	IS1 (PFB)	1	IS2 (DFB)	1	IS3 (CBZ)	1
!		AREA #	RT#	AREA #	RT #	AREA #	RT #
		=======	======	========	======	========	======
12 HOUR STD		208318	9.96	338759	10.56	282511	13.62
UPPER LIMIT	i	416636	10.46	677518	11.06	565022	14.12
LOWER LIMIT		104159	9.46	169380	10.06	141256	13.12
========== =		*********	**======	========	,	====================================	
CLIENT SAMPLE	LAB SAMPLE	1		1		1	
ID	ID	1		l i		i	
=======================================		=========		=========	========		
01 WG1669-LCS W	WG1669-2	219448	9.96	354084	10.56	296837	13.62
02 WG1669-BLANK	WG1669-1	190384	9.96	318145	10.55	267210	13.61
03 FC-MW-20R-0103 W	WT0233-2	296397	9.94	479000	10.54	392220	13.61
04 FC-MW-05-0103 W	WT0233-3	296173	9.94	476723	10.54	395963	13.61
05				i		i	
06 _				·	-		
07	<u> </u>			<u> </u>		:	
08	·						
09							
10				1			
11				1			
12	}		{				
13			1				
14 _				I.			
15 _			1				
16			1				
17	I						
18	t				1		
19		l					
20 _		1		1			

IS1 (PFB) = Pentafluorobenzene

(DFB) = 1,4-Difluorobenzene (CBZ) = Chlorobenzene-D5 IS2

IS3

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = ~ 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 1 of 2

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CT0233

SDG No.: CTO233-4

Lab File ID (Standard): F9115 Date Analyzed: 02/05/03

Instrument ID: GCMS-F

Time Analyzed: 1545

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

	·							
1		IS4 (DCB)	1	1		1		1
ļ		AREA #	RT #	AREA	# RT	# İ	AREA #	RT #
=================		========	======	=======	= ====:	== ==		
12 HOUR STD		134207	15.23	Ĺ	j	i		i i
UPPER LIMIT		268414	15.73		-i	_i_		
LOWER LIMIT		67104	14.73		- j	i_		
			=========		-	; :==] ==:		
CLIENT SAMPLE	LAB SAMPLE	l i		1	İ	i		i i
ID	ļ ID	l I	1	ł	1	i		
=======================================		=======================================	=======	==========				====================================
•	WG1669-2	141575	15.22	l]	i		
· ·	WG1669-1	118722	15.22	1	1	i		
•	WT0233-2	168751	15.22	l				
· · ·	WT0233-3	171956	15.22	l				
05	İ	I		l	1	i		
06	l				.			
07	l <u></u> l	<u> </u>		l	.l <u></u>	i		
08	ll			l	<u> </u>	i		
09	ll			l				
10	l[l		l <u></u>	1	I		
11				l <u></u> _	.l <u></u>			
12				l <u></u>	.	1		
13	I			<u></u>	.1	!		
14		I		l	1	l	i	
15						I		
16						I		
171					l	_ _	I	1
18		l			l	l		
19		l			l	l		
20				· · · · · · · · · · · · · · · · · · ·		_1		

IS4 (DCB) = 1,4-Dichlorobenzene-D4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 2 of 2

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: FB080

BFB Injection Date: 02/07/03

Instrument ID: GCMS-F

BFB Injection Time: 0833

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=======================================
50	15.0 - 40.0% of mass 95	24.9
75	30.0 - 60.0% of mass 95	54.0
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	5.8
173	Less than 2.0% of mass 174	1.2 (2.0)1
174	Greater than 50.0% of mass 95	62.0
175	4.0 - 9.0% of mass 174	5.2 (8.4)1
176	95.0 - 101.0% of mass 174	60.0 (96.8)1
177	5.0 - 9.0% of mass 176	3.6 (6.0)2
li		İ

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		==============		=======	========
01		VSTD050F07B	F9155	02/07/03	1008
	WG1670-LCS	WG1670-2	F9156	02/07/03	1130
03	WG1670-BLANK	WG1670-1	F9158	02/07/03	1250
	FC-MW-06-0103	WT0233-1	F9165	02/07/03	1743
05				i	
06					
07					
08					<u> </u>
09					
10					[
11					
12					
13					
14					
15					
16	·				
17					
18					
19					
20					
21					
22			l		

page 1 of 1

FORM 7B VOLATILE CALIBRATION VERIFICATION SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-F Calibration Date: 02/07/03 Time: 1008

Lab File ID: F9155 Init. Calib. Date(s): 02/05/03 02/05/03

Init. Calib. Times: 0948 1327

GC Column: RTX-VMS ID: 0.18 (mm)

		RRF50.000		1		<u> </u>	1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
	========	=======	========	=====		========	====
m+p-Xylenes	0.7630000	0.7393500	0.7393500	0.01	-3.10	i	AVRG
trans-1,2-Dichloroethene	0.5880000	0.6036300	0.6036300	0.01	2.66	i ·	AVRG
cis-1,2-Dichloroethene	0.6330000	0.6046200	0.6046200	0.01	-4.48	i	AVRG
o-Xylene			0.7124100		•		AVRG
Chloromethane	1.1290000	0.9603400	0.9603400	0.1			AVRG
Vinyl chloride	0.8980000	0.8222300	0.8222300	0.01	-8.44	20.00	
Bromomethane	31.091000	50.000000	0.2784800	0.01	-37.82		2RDR
Chloroethane	42.816000	50.000000	0.4558100	0.01	-14.37		2RDR
1,1-Dichloroethene	0.5290000	0.4803200	0.4803200	0.1	-9.20	20.00	,
Methylene Chloride	49.519000	50.000000	0.6044300	0.01	-0.96		LINR
Methyl tert-butyl ether		2.0501000		0.01	•		AVRG
1,1-Dichloroethane			1.3852000	-0.01	-2.18		AVRG
1,2-Dichloroethylene (total)	0.0000000	0.6041200	0.6041200	0.01	•		AVRG
Chloroform	1.3550000	1.3304000	1.3304000	0.01	-1.82	20.00	!
Carbon Tetrachloride	0.6250000	0.5953800	0.5953800	0.01	-4.74		AVRG
1,1,1-Trichloroethane			1.2219000	0.01	-0.09		AVRG
Benzene	1.4640000	1.3981000	1.3981000	0.01			AVRG
1,2-Dichloroethane		0.8659400		0.01		i	AVRG
Trichloroethene	48.875000	50.000000	0.4117400	0.01			LINR
1,2-Dichloropropane		0.4132500		0.01		20.00	
Bromodichloromethane	0.6510000	0.6407100	0.6407100	0.01	-1.58		AVRG
cis-1,3-dichloropropene	0.7280000	0.7068500	0.7068500	0.01	~2.90		AVRG
2-Chloroethylvinylether	1.1e-002			0.01	-100.00	•	AVRG
Toluene	0.8860000	0.8335500	0.8335500	0.01	-5.92	20.00	
[etrachloroethene	0.3060000			0.01	-7.94		AVRG
trans-1,3-Dichloropropene	0.7170000			0.01	-8.33		AVRG
1,1,2-Trichloroethane	0.2920000			0.01	-6.62		AVRG
Dibromochloromethane	0.4940000			0.01	0.79		AVRG
Chlorobenzene	1.0860000			0.3	-3.08	!	AVRG
	i			1.5	3.50	1	1.41.0

page 1 of 2

FORM VII PEST

FORM 7B VOLATILE CALIBRATION VERIFICATION SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-F Calibration Date: 02/07/03 Time: 1008

Lab File ID: F9155 Init. Calib. Date(s): 02/05/03 02/05/03

Init. Calib. Times: 0948 1327

GC Column: RTX-VMS ID: 0.18 (mm)

	COMPOUND	RRF or						
· I		KKF OL	or	CCAL	MIN	%D or	MAX %D or	CURV
		AMOUNT	TRUOMA	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
==		========	=======	=======	=====	======	=======	====
Et	thylbenzene	2.1430000	2.0612000	2.0612000	0.01	-3.82	20.00	AVRG
xy	ylenes (total)	0.0000000	0.7303700	0.7303700	0.01	0.00	!	AVRG
Br	romoform	0.3390000	0.3281300	0.3281300	0.1	-3.21		AVRG
1,	,1,2,2-Tetrachloroethane	48.004000	50.000000	1.0243000	0.3	-3.99		LINR
==			=======	=======	=====	======		====
Di	ibromofluoromethane	0.6640000	0.6713000	0.6713000	0.01	1.10	ļ	AVRG
1,	,2-Dichloroethane-D4	1.1600000	1.1080000	1.1080000	0.01	-4.48		AVRG
Tc	oluene-D8	1.2160000	1.1769000	1.1769000	0.01	-3.22		AVRG
P-	-Bromofluorobenzene	0.6060000	0.5907000	0.5907000	0.01	-2.52		AVRG
l								1
	and the second of the second of the second		Sign to the same		, ,	-		-
		1 3.1	1875 July 1973		+ 1 + + +			

page 2 of 2

FORM VII PEST

KATAHDIN ANALYTICAL SERVICES

Report of Analytical Results

Client:

Project: NAF KEY WEST CTO233

PO No: Sample Date: Received Date:

Extraction Date: 02/07/02 Analysis Date: 02/07/03 Report Date: 02/26/2003

Matrix: WATER % Solids: NA

4 - 2 - 2

Lab ID: WG1670-1

Client ID: WG1670-BLANK

SDG: CTO233-4 Extracted by: JEY

Extraction Method: SW846 5030

Analyst: JEY

Analysis Method: SW846 8260B

Lab Prep Batch: WG1670

Units: ug/l

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	m+p-Xylenes	υ	2	1.0	2	2	0.5
156-60-5	trans-1,2-Dichloroethene	U	1	1.0	1	1	0.5
156-59-2	cis-1,2-Dichloroethene	σ	1	1.0	1	1	0.5
95-47-6	o-Xylene	σ	1	1.0	1	1	0.5
74-87-3	Chloromethane	σ	2	1.0	2	2	0.5
75-01-4	Vinyl chloride	σ	2	1.0	2	2	0.5
74-83-9	Bromomethane	σ	2	1.0	2	2	0.5
75-00-3	Chloroethane	σ	2	1.0	2	2	0.5
75~35-4	1,1-Dichloroethene	υ	1	1.0	1	1	0.5
75-09-2	Methylene Chloride	σ	2	1.0	2	2	0.5
1634-04-4	Methyl tert-butyl ether	ប	2	1.0	2	2	0.3
75-34-3	1,1-Dichloroethane	σ	1	1.0	1	1	0.5
540-59-0	1,2-Dichloroethylene (total)	ŭ	2	1.0	2	2	0.5
67-66-3	Chloroform	U	. 1	1.0	1	. 1	.0 . 5.
56-23-5	Carbon Tetrachloride	Ū	1	1.0	1	1	0.5
71-55-6	1,1,1-Trichloroethane	\mathbf{u}	. 1	1.0	1	1	0.5
71-43-2	Benzene	σ	1	1.0	1	1	0.5
107-06-2	1,2-Dichloroethane	σ	1	1.0	1	1	0.5
79-01-6	Trichloroethene	υ	1	1.0	1	1	0.5
78-87-5	1,2-Dichloropropane	Ü	1	1.0	1	1	0.5
75-27-4	Bromodichloromethane	υ	1	1.0	1	1	0.5
10061-01-5	cis-1,3-dichloropropene	U	1	1.0	1	1	0.5
110-75-8	2-Chloroethylvinylether	U	1	1.0	1	1	0.5
108-88-3	Toluene	U	1	1.0	1	1	0.2
127-18-4	Tetrachloroethene	, U	1	1.0	1	1	0.5
10061-02-6	trans-1,3-Dichloropropene	U	1	1.0	1	1	0.5
79-00-5	1,1,2-Trichloroethane	υ	1	1.0	1	1	0.5
124-48-1	Dibromochloromethane	U	1	1.0	1	1	0.5
108-90-7	Chlorobenzene	U	· 1	1.0	1	1 .	0.5
100-41-4	Ethylbenzene	U	1	1.0	1	1	0.5
1330-20-7	Xylenes (total)	Ū	3	1.0	3	3	0.5
75-25-2	Bromoform	ช	1	1.0	1	1	0.5
79-34-5	1,1,2,2-Tetrachloroethane	υ	1	1.0	1	1	0.5
1868-53-7	Dibromofluoromethane		99%				
17060-07-0	1,2-Dichloroethane-D4		98%				•
2037-26-5	Toluene-D8		101%				
460-00-4	P-Bromofluorobenzene		97%				

Page 01 of 01 F9158.D

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Lab File ID (Standard): F9155 Date Analyzed: 02/07/03

Instrument ID: GCMS-F Time Analyzed: 1008

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) N

			1	,			
· ļ		IS1 (PFB)	1	IS2 (DFB)	ţ	IS3 (CBZ)	1
ţ		AREA #	RT #	AREA #	RT #	AREA #	RT #
=======================================	========	=======	======	=======	======	========	======
12 HOUR STD		179471	9.94	297273	10.54	247238	13.61
UPPER LIMIT		358942	10.44	594546	11.04	494476	14.11
LOWER LIMIT		89736	9.44	148637	10.04	123619	13.11
*****************		========				=========	
CLIENT SAMPLE	LAB SAMPLE	İ		Ì		i	
ID	ID			1 1		I i	
=======================================	============			======		====================================	
01 WG1670-LCS	WG1670-2	176334	9.95	287334	10.55	245277	13.61
02 WG1670-BLANK	WG1670-1	164700	9.95	270285	10.55	226597	13.61
03 FC-MW-06-0103	WT0233-1	207195	9.95	335229	10.55	279875	13.62
04	l	li		li		ii	
05	l	l					
06							
07-				4.301			
08]							
09				1			
10							
11							
12		!		i i			
13							
14							
15		 		1			
16							
17				· · · · · · · · · · · · · · · · · · ·		·	·
	·	·'					
18						ı	
18 19	<u>:</u>				!	<u> </u>	

IS1 (PFB) = Pentafluorobenzene

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-D5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 1 of 2

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): F9155

Date Analyzed: 02/07/03

Instrument ID: GCMS-F

Time Analyzed: 1008

GC Column: RTX-VMS ID: 0.18 (mm)

Heated Purge: (Y/N) N

		, 					
		IS4 (DCB)		1			1
ļ		AREA #	RT #	AREA :	F RT	# AREA #	# RT #
=======================================		=======	======	========	= ======	= =======	• j ======
12 HOUR STD		119383	15.22		_ [İ	j
UPPER LIMIT		238766	15.72	·	1	_ i	
LOWER LIMIT		59692	14.72				
		=======================================			=======	=	
CLIENT SAMPLE	LAB SAMPLE	!	İ	I	1	Ì	i
ID	ID	}	}	i	ı	i	i
F-24	=======================================				========		
01 WG1670-LCS	WG1670-2	118667	15.23	l			İ
02 WG1670-BLANK	WG1670-1	98618	15.23		1	_1	i
03 FC-MW-06-0103	WT0233-1	115569	15.23			_	1
04	.1	l!			.1		1
05	.	l <u></u>			.1		
06		·1			1		i .
07				l <u></u>			
08	<u> </u>	·			.l		i
09	.	l		l	l		1
10	.1				1		
11	!	i		<u></u>	.l	_	1
12	ll				l		1
13	ll				l	_ _	1
14	l				.1	_	l
15			i		l	_1	1
16	ll		1		l]
17	ll		1		l	_1	1
18	ll		l		!	_	I
19	li		l		ļ		
20	lI		1		1		

IS4 (DCB) = 1,4-Dichlorobenzene-D4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page 2 of 2

FORM 8 VOLATILE ANALYTICAL SEQUENCE

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

GC Column: SPB 608 ID: 0.53 (mm) Init. Calib. Date(s): 02/10/03 02/10/03

Instrument ID: GC03

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

CLIENT LAB DATE TIME TCX RT # RT #		MEAN SURRO	GATE RT FROM	INITIAL CAL	IBRATION	1		
SAMPLE ID SAMPLE ID ANALYZED ANALYZED RT # RT #		TCX: 12.32			•	İ		
SAMPLE ID SAMPLE ID ANALYZED ANALYZED RT # RT #								
Cal		1	LAB	DATE	TIME	TCX		
01 ICAL		SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT	#j
02 ICAL 0.025 PPM 02/10/03 1614 12.33 03 ICAL 0.05 PPM 02/10/03 1633 12.33 04 ICAL 0.1 PPM 02/10/03 1651 12.32 05 ICAL 0.25 PPM 02/10/03 1710 12.32 06 ICAL 0.5 PPM 02/10/03 1729 12.32 07 ICAL 1.0 PPM 02/10/03 1747 12.29 08 WG1604-BLANK WG1604-1 02/10/03 1806 12.31 09 WG1604-LCS WG1604-2 02/10/03 1824 12.31 10 WG1604-LCSD WG1604-3 02/10/03 1843 12.31 11 FC-MW-06-010 WT0233-1 02/10/03 2224 12.31 12 FC-MW-20R-01 WT0233-2 02/10/03 2301 12.31 14 CV 0.50PPM 02/10/03 2319 12.29 15		!	=========		========	======	=====	=== j
03 ICAL			0.01 PPM	02/10/03	1556	12.33	İ	i
04 ICAL	02	ICAL	0.025 PPM	02/10/03	1614	12.33		
05 ICAL	03	ICAL	0.05 PPM	02/10/03	1633	12.33		
05 ICAL	04	ICAL	0.1 PPM	02/10/03	1651	12.32		
07 ICAL	05	ICAL	0.25 PPM	02/10/03	1710	12.32		i
08 WG1604-BLANK WG1604-1 02/10/03 1806 12.31 09 WG1604-LCS WG1604-2 02/10/03 1824 12.31 10 WG1604-LCSD WG1604-3 02/10/03 1843 12.31 11 FC-MW-06-010 WT0233-1 02/10/03 2224 12.31 12 FC-MW-20R-01 WT0233-2 02/10/03 2242 12.27 13 FC-MW-05-010 WT0233-3 02/10/03 2301 12.31 14 CV 0.50PPM 02/10/03 2319 12.29 15 16 17 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	06	ICAL	0.5 PPM	02/10/03	1729	12.32		¦
08 WG1604-BLANK WG1604-1 02/10/03 1806 12.31 09 WG1604-LCS WG1604-2 02/10/03 1824 12.31 10 WG1604-LCSD WG1604-3 02/10/03 1843 12.31 11 FC-MW-06-010 WT0233-1 02/10/03 2224 12.31 12 FC-MW-20R-01 WT0233-2 02/10/03 2242 12.27 13 FC-MW-05-010 WT0233-3 02/10/03 2301 12.31 14 CV 0.50PPM 02/10/03 2319 12.29 15				02/10/03	1747	12.29		i
09 WG1604-LCS WG1604-2 02/10/03 1824 12.31 10 WG1604-LCSD WG1604-3 02/10/03 1843 12.31 11 FC-MW-06-010 WT0233-1 02/10/03 2224 12.31 12 FC-MW-20R-01 WT0233-2 02/10/03 2242 12.27 13 FC-MW-05-010 WT0233-3 02/10/03 2301 12.31 14 CV 0.50PPM 02/10/03 2319 12.29 15			WG1604-1	02/10/03	1806			
10 WG1604-LCSD WG1604-3 02/10/03 1843 12.31 11 FC-MW-06-010 WT0233-1 02/10/03 2224 12.31 12 FC-MW-20R-01 WT0233-2 02/10/03 2242 12.27 13 FC-MW-05-010 WT0233-3 02/10/03 2301 12.31 14 CV 0.50PPM 02/10/03 2319 12.29 15	09	WG1604-LCS	WG1604-2	02/10/03	1824	12.31		
11 FC-MW-06-010 WT0233-1 02/10/03 2224 12.31 12 FC-MW-20R-01 WT0233-2 02/10/03 2242 12.27 13 FC-MW-05-010 WT0233-3 02/10/03 2301 12.31 14 CV 0.50PPM 02/10/03 2319 12.29 15	10	WG1604-LCSD	WG1604-3	02/10/03	1843			
12 FC-MW-20R-01 WT0233-2 02/10/03 2242 12.27 13 FC-MW-05-010 WT0233-3 02/10/03 2301 12.31 14 CV 0.50PPM 02/10/03 2319 12.29 15	11	FC-MW-06-010	WT0233-1		2224			
13 FC-MW-05-010 WT0233-3 02/10/03 2301 12.31 14 CV 0.50PPM 02/10/03 2319 12.29 15 16 17 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	12	FC-MW-20R-01	WT0233-2	02/10/03	2242			—¦
14 CV 0.50PPM 02/10/03 2319 12.29	13	FC-MW-05-010	WT0233-3		2301			
15	14	CV	0.50PPM	02/10/03	2319	,		
17	15			i				
18	16							—¦
19	17							
	18					!		
	19							
20	20							

QC LIMITS
TCX = Tetrachloro-M-Xylene (+/- 0.24 MINUTES)

page 1 of 1

FORM VIII PEST

[#] Column used to flag retention time values with an asterisk.

^{*} Values outside of QC limits.

FORM 8 VOLATILE ANALYTICAL SEQUENCE

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

GC Column: RTX-CLP II ID: 0.53 (mm) Init. Calib. Date(s): 02/10/03 02/10/03

Instrument ID: GC03

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO TCX: 11.60	GATE RT FROM	INITIAL CAL	IBRATION	[
	CLIENT	LAB	DATE	TIME	TCX		— _I
	SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT	#
	========		=======	=======	=======	======	==
01	ICAL	0.01 PPM	02/10/03	1556	11.72*		i
02	ICAL	0.025 PPM	02/10/03	1614	11.63		
03	ICAL	0.05 PPM	02/10/03	1633	11.63		i
04	ICAL	0.1 PPM	02/10/03	1651	11.61		
05	ICAL	0.25 PPM	02/10/03	1710	11.60		
06	ICAL	0.5 PPM	02/10/03	1729	11.60		-i
07	ICAL	1.0 PPM	02/10/03	1747	11.59		-1
80	WG1604-BLANK	WG1604-1	02/10/03	1806	11.60		-
09	WG1604-LCS	WG1604-2	02/10/03	1824	11.59		-¦
10	WG1604-LCSD	WG1604-3	02/10/03	1843	11.60		-:
	FC-MW-06-010		02/10/03	2224	11.59		-:
12	FC-MW-20R-01	WT0233-2	02/10/03	2242	11.49*		-
13	FC-MW-05-010	WT0233-3	02/10/03	2301	11.59		-:
14	CV	0.50PPM	02/10/03	2319	11.57		
15			į	İ	i		-
16							-¦
17					i		¦
18							
19							
20							-¦

page 1 of 1

FORM VIII PEST

[#] Column used to flag retention time values with an asterisk.

^{*} Values outside of QC limits.

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC03

Calibration Date(s): 02/10/03 02/10/03

Column: SPB 608 ID: 0.53 (mm) Calibration Time(s): 1556

1747

LAB FILE ID:

RF0.01: 3TB1003 RF0.025: 3TB1004 RF0.05: 3TB1005

RF0.1: 3TB1006 RF0.25: 3TB1007 RF0.5: 3TB1008

1		<u></u>										
1		!	1		1 1		ł		COEFFICENT	rs .	*RSD	MAX &RSD!
COMPOUND	RF0.01	RF0.025	RF0.05	RFO.1	RF0.25	RF0.5	CURVE	A0	A1	l A2	OR R^2	OR R^2
	======		======	====	======	======	=== =	======	:= =======			
1,2-Dibromoethane	566	1780	3059		16781	30885	l 20RDR	1e-002	110-005	110-010	10 00700	0.99000
1,2,3-Trichloropropane	113	Ì	246	316		3343	מתפחבו	20-002	110 000	126-010	10.33735	10.99000
1,2-Dibromo-3-Chloropropane	855	2669			,,	40145	[200DA	126-002	12-004	186-009	0.99615	0.99000
					2/100	49145	ZOKDR	1e-002	8e-006	4e-011	0.99818	0.99000
		======	=====	======					= =======	=======		
Tetrachloro-M-Xylene	2547	7579	13307	21552	25326	33733	20RDR	-6e-003	4e-005	-7e-011	0.99804	
l	 	اـــــا	ll		II		I I		1	1 1		

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC03

Calibration Date(s): 02/10/03 02/10/03

Column: SPB 608 ID: 0.53 (mm) Calibration Time(s): 1556 1747

RF1: 3TB1009

1	1		i	1	C	COEFFICENT	s	*RSD	MAX	*RSD
COMPOUND	1	RF1	CURVE	1 7	40	A1	A2	OR R^2	OR	R^2
	- -	####==	=====	====					-	====
1,2-Dibromoethane	_	51670	20RDR	1e-0	002	le-005	1e-010	0.99795	0.99	000
1,2,3-Trichloropropane	1	5968	20RDR	2e-0	002	le-004	8e-009	0.99615	0.99	000 <-
[1,2-Dibromo-3-Chloropropane_	1	85266	20RDR	1e-0	002	8e-006	4e-011	0.99818	0.99	000 [
	- -					: ======				.====
Tetrachloro-M-Xylene	.1	73361	20RDR	-6e-	003	4e-005	-7e-011	0.99804	0.99	000 [
1	_	1		I		.l	l	l	İ	i

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC03

Calibration Date(s): 02/10/03 02/10/03

Column: RTX-CLP II ID: 0.53 (mm) Calibration Time(s): 1556 1747

LAB FILE ID: RF0.01: 3TB2003 RF0.025: 3TB2004 RF0.05: 3TB2005

RF0.1: 3TB2006 RF0.25: 3TB2007 RF0.5: 3TB2008

	 I		l :				ł	 I	COEFFICENTS	l too lumina
	RF0.01							OA	i al i az	%RSD MAX %RSD OR R^2 OR R^2
F88222ERR#\$#\$#\$#\$#\$########################				=======				-=====	= ====== ====	
1,2-Dibromoethane	<u> </u>	107	258	213	1335	2990	20RDR	2e-002	le-004 7.e-0	000 0.99530 0.99000
1,2,3-Trichloropropane	.	26		49	228					7 0.99754 0.99000
1,2-Dibromo-3-Chloropropane_	••	•			•	3004	20RDR	1e-002	2e-004 4e-00	9 0.99812 0.99000
	======									
Tetrachloro-M-Xylene	.	488	858	1434	1729	2341	20RDR	-1e-002	6.e-004 -2e-0	008 0.99862 0.99000
l	.1	·	·				II		_	

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC03

Calibration Date(s): 02/10/03 02/10/03

Column: RTX-CLP II ID: 0.53 (mm) Calibration Time(s): 1556

1747

RF1: 3TB2009

1	1		l	I	COEFFICENT	s	1	*RSD	MAX :	krsd
COMPOUND	1	RF1	CURVE	A0	A1	A2	1	OR R^2	OR	2^2 i
****************	=	*****			= ======	#==ce===	=	****	====:	-==
1,2-Dibromoethane	_1				1e-004					
1,2,3-Trichloropropane	_1				9e-004					
1,2-Dibromo-3-Chloropropane		5683	20RDR	le-002	2e-004	4e-009	0	.99812	0.990	1 00
	- :						=		=====	===
Tetrachloro-M-Xylene					6.e-004					
	_1.	1	1	i	i	· I	i			

FORM 7B VOLATILE CALIBRATION VERIFICATION SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC03

Calibration Date: 02/10/03 Time: 2319

Init. Calib. Times: 1556

1747

GC Column: SPB 608 ID: 0.53 (mm)

		RRF0.5000		<u> </u>		1	r .	٦,
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	,
	AMOUNT	AMOUNT	RRF0.5000	RRF	%DRIFT	i	TYPE	•
1 0 0'1	=======	========	=======	=====	======		====	i
1,2-Dibromoethane	0.4629500	0.5000000	57088.000	0.01	7.41	30.00	2RDR	i
1,2,3-Trichloropropane	0.5557000	0.5000000	7394.0000	0.01	11.14	2	!	•
	0.5144600	0.5000000	100220.00	0.01	2.89			•
######################################		=======		=====	======	========	====	1
Tetrachloro-M-Xylene	1.6752000	1.2500000	37314.000	0.01	34.02	30.00	2RDR	į.
		l			li	l		į

FORM VII PEST

FORM 7B VOLATILE CALIBRATION VERIFICATION SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC03

Calibration Date: 02/10/03 Time: 2319

Lab File ID: 3TB2027

Init. Calib. Date(s): 02/10/03 02/10/03

Init. Calib. Times: 1556 1747

GC Column: RTX-CLP II ID: 0.53 (mm)

	l	RRF0.5000		i -			1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF0.5000	RRF	%DRIFT	%DRIFT	TYPE
	=======	========	=======	====	======	=======	====
	0.4772600				-4.55	30.00	2RDR
1,2,3-Trichloropropane	0.4615300				-7.69	30.00	2RDR
1,2-Dibromo-3-Chloropropane_	0.5281600	0.5000000	6332.0000	0.01	5.63	30.00	2RDR
#======================================	=======	=======	=======	=====	======	=======	====
Tetrachloro-M-Xylene	1.5685000	1.2500000	2403.2000	0.01	25.48	30.00	2RDR
l							l

FORM VII PEST

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/10/03 Received Date: 02/10/03 Extraction Date: 02/10/03 Analysis Date: 02/10/03

Report Date: 02/27/2003

Matrix: WATER % Solids: NA

Lab ID: WG1604-1

Client ID: WG1604-Blank

SDG: CTO233-4 Extracted by: LRS

Extraction Method: EPA 504.1

Analyst: LRS

Analysis Method: EPA 504.1 Lab Prep Batch: WG1604

Units: ug/L

 CAS#
 Compound
 Flags
 Results
 DF
 PQL
 Adj.PQL
 Adj.MDL

 106-93-4
 1,2-Dibromoethane
 U
 0.020
 1.0
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020
 0.020

Page 01 of 01 3TB1010.d

FORM 2 WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

GC Column(1): SPB 608 ID: 0.53 (mm)GC Column(2): RTX-CLP IIID: 0.53 (mm)

SAMPLE ID SAMPLE ID TCX# TCX# O	TTOTO
====================================	0 0 0 0
01 WG1604-BLANK WG1604-1 100 97 02 WG1604-LCS WG1604-2 118 118 03 WG1604-LCSD WG1604-3 116 113 04 FC-MW-06-0103 WT0233-1 70 63 05 FC-MW-20R-0103 WT0233-2 110 115 06 FC-MW-05-0103 WT0233-3 88 87 07 08 09 10 11 12 13 14 15 16 17 18 19	0 0 0
02 WG1604-LCS WG1604-2 118 118 110 113	0 0
03 WG1604-LCSD WG1604-3 116 113	0 0
04 FC-MW-06-0103 WT0233-1 70 63	0
05 FC-MW-20R-0103 WT0233-2 110 115	0
06 FC-MW-05-0103 WT0233-3 88 87	0
06 FC-MW-05-0103 WT0233-3 88 87	•
07 08 09 10 11 12 13 14 15 16 17 18 19	01
09	١,
10	¦
11	-1
12	!
12	-!
14	-!
15	-!
16	-!
17 18 19	_
18 19	_!
19	-!
! 	_!
! 	_[
	_[
21	_[
22	_
23	$_{\perp}$
24	_
25	_1
26	ΞÌ
27	- j
28	-i
40	~ i

SMC1 (TCX) = Tetrachloro-M-Xylene

QC LIMITS (57-128)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: KD026

DFTPP Injection Date: 03/03/03

Instrument ID: GCMS-K

DFTPP Injection Time: 1228

	TOX ADDRIVE CDIMEDIA	% RELATIVE ABUNDANCE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		========
51	30.0 - 60.0% of mass 198	47.6
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Less than 100.0% of mass 198	59.7
70	Less than 2.0% of mass 69	0.0 (0.0)1
127	40.0 - 60.0% of mass 198	43.4
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.0
275	10.0 - 30.0% of mass 198	24.9
365	1.0 - 100.0% of mass 198	3.6
441	0.0 - 100.0% of mass 443	9.6 (80.3)2
442	40.0 - 100.0% of mass 198	59.0
443	17.0 - 23.0% of mass 442	11.9 (20.2)3
j		

1-Value is % mass 69 3-Value is % mass 442 2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	*======================================	==========	========	=======	
01		SSTD014K0303	K3773	03/03/03	1425
02		SSTD028K0303	K3774	03/03/03	1511
03		SSTD112K0303	К3776	03/03/03	1643
04		SSTD042K0303	K3777	03/03/03	1729
05		SSTD070K0303	K3778	03/03/03	1815
06	•	SSTD140K0303	K3779	03/03/03	1900
07	WG1575-BLANK	WG1575-1	K3780	03/03/03	1945
80	S1SW-2-0103	WT0246-11	K3784	03/03/03	2245
09	S1MW-7-0103	WT0233-6	K3785	03/03/03	2330
10					
11					
12					
13					[
14					
15					
16					
17					
18					
19					
20					1

page 1 of 1

FORM V SV

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K

Calibration Date(s): 03/03/03 03/03/03

Column: DB5-MS ID: 0.25 (mm) Calibration Time(s): 1254 1900

RF28: K3774

LAB FILE ID: RF14: K3773 RF28: K3774
RF70: K3778 RF112: K3776 RF140: K3779

RF42: K3777

			ı	- 1	ł		1	[c	OEFFICENT.	S	*RSD	MAX %RS
COMPOUND	RF14	RF28	RF42	RF70	RF112		•	A0	A1 	A2		OR R^2
-Picoline	1.072	1.106	1.224					====================================	1.14417	 	16.104	
Pyridine	1.289		1.401						1.34517	i	11.194	15.000
-Nitrosodimethylamine	0.846					0.758	AVRG		0.91949		16.718	15.000
Aniline	1.640	-	1.709			1.530	AVRG		1.66517	1	4.823	15.000
Phenol	1.301	:	1.417			1.218		 	1.35148		8.108	30.000
Bis(2-Chloroethyl)ether	1.090		:		1.062	0.968	AVRG		1.03885	1	7.209	15.000
2-Chlorophenol	1.174	-	1.167			1.008	AVRG	<u> </u>	1.12091	l	8.200	15.000
.3-Dichlorobenzene	1.321		1.315		1.308		AVRG		1.31726	1	6.776	15.000
.4-Dichlorobenzene	1.431			1.286	1.322	1.233		l	1.33176	1	5.846	30.000
,2-Dichlorobenzene	1.285		1.187						1.21896	! !	9.440	:
Benzyl alcohol	0.602		0.609		0.593		•	·—	0.60700	i	4.254	
Bis (2-Chloroisopropyl) ether_			2.446				AVRG		2.66757		13.711	15.000
2-Methylphenol	0.918		0.8981		0.826		AVRG		0.84138	1	14.829	•
Hexachloroethane	0.613		0.546				AVRG		0.55652	1	10.792	•
V-Nitroso-di-n-propylamine	0.887		0.729				•		0.76933	1	10.807	:
8&4-Methylphenol	0.007 0.981		:						0.88543	l	•	15.000
Vitrobenzene	0.440		0.418						0.41240	!	•	15.000
Isophorone	0.730		0.660						0.66267	!	6.293	•
2-Nitrophenol	0.736		:	:			AVRG		0.20757	'	1 2.807	•
2.4-Dimethyphenol	0.364		0.326	:					0.34324	\	4.845	
3is (2-Chloroethoxy) methane	0.504							·	0.53713		9.925	
	0.299		:				AVRG	 	0.28826	 	3.940	:
2,4-Dichlorophenol	0.372	•	:				•	·	0.35161		5.483	:
1,2,4-Trichlorobenzene	1.006		0.830						0.88693	! !	8.875	
Waphthalene							AVRG		10.38655	!	•	15.000
-Chloroaniline	0.413						AVRG		0.22534	1	8.026	•
Hexachlorobutadiene	0.225		0.218					!	0.27695	1		30.000
I-Chloro-3-Methylphenol	0.288							!	0.74417	l	4.733	•
2-Methylnaphthalene	0.797		0.720	:				l	0.29236	!	•	J 15.000
Hexachlorocyclopentadiene	0.330		0.293	:			AVRG			l		
2,4,6-Trichlorophenol	0.426				0.425				0.42555	!		30.000
2,4,5-Trichlorophenol	0.467							·	0.45185	!	4.104	:
2-Chloronaphthalene	2.239								[2.11494	!	4.393	•
2-Nitroaniline	0.370						AVRG		0.40390	1		15.000
Acenaphthylene	1.563						•	· ———	11.42375	!	:	15.000
Dimethyl Phthalate	1.338		1.190	•					1.22002	I	•	15.000
2,6-Dinitrotoluene	0.297		0.300				•		0.31024	·	•	15.000
Acenaphthene	1.141	:	0.972				AVRG	l	1.01306	11		30.000
3-Nitroaniline	0.244		0.283	•			AVRG	!	0.28172	I		15.000
2,4-Dinitrophenol		0.167					AVRG		0.15665			15.000
Dibenzofuran	•	1.410					AVRG		1.36144			15.000
-Nitrophenol	•	0.118					AVRG		0.11084			15.000
2,4-Dinitrotoluene	•	0.387			-		AVRG	-	0.37244	-	•	15.000
Fluorene	92221							-9e-002	1.03585	l	0.99244	•
Diethylphthalate	1.228	1.233	1.167	1.108	1.167	1.080	AVRG	l	1.16418	I	5.298	15.000

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K

Calibration Date(s): 03/03/03 03/03/03

Column: DB5-MS

ID: 0.25 (mm) Calibration Time(s): 1254

1900

LAB FILE ID: RF14: K3773 RF28: K3774 RF70: K3778 RF112: K3776 RF140: K3779

RF42: K3777

1	1 1					!	1		OEFFICENT	s	%RSD	MAX %R	—
COMPOUND	RF14	RF28	RF42	RF70	RF112			A0	A1	A2	OR R^2	OR R^	`2
4-Chlorophenyl-phenylether	 0.566		•	•					 0.54495	=======	•	15.00	
4-Nitroaniline	0.265			•			•		0.26954	1		1 15.00	
4,6-Dinitro-2-Methylphenol	•			• •					0.17159	!	12.212	•	
N-Nitrosodiphenylamine/DPA				•					0.45119	·	•	30.00	
1,2-Diphenylhydrazine	1.095			•					0.96314	1	8.014	•	
4-Bromophenyl-phenylether	0.292						AVRG		0.24853	1		1 15.00	
Hexachlorobenzene	0.368								0.33352	1	6.882		
Pentachlorophenol	0.183		•						0.20912		8.852	30.00	
Phenanthrene	1.010	0.989	0.916	0.877	0.910	0.860	AVRG		0.92708	I	6.486	1 15.00	0
Anthracene	1.120	0.956	0.929	0.920	0.883	0.848	AVRG		0.94261	1	10.056	15.00	0
Carbazole	0.764	0.835	0.809	0.868	0.835	0.759	AVRG		0.81176	1	•	15.00	
Di-n-butylphthalate	1.068			1.031	1.095	0.985	AVRG		1.08285	I	8.529	15.00	, o
Fluoranthene	0.876						•		0.87723	l	12.193	•	
Benzidine	0.289		•	0.235	0.236				0.25380	l	8.417	15.00	0
Pyrene	1.615	1.216	1.333	1.338	1.290	1.341	AVRG		1.35527	ł	10.034	•	
Butylbenzylphthalate	0.711	0.546	0.527	0.521	0.578	0.538	AVRG		0.57033	l	12.579	15.00	0
Benzo(a) anthracene	1.067	0.944	0.885	0.891	0.957	0.886	AVRG		0.93809	1	7.499	15.00	0
Chrysene	0.992	0.951	0.839	0.838	0.881	0.825	AVRG [0.88758	1	7.766	15.00	0
3,3'-Dichlorobenzidine	0.390	0.387	0.356	0.356	0.381	0.362	AVRG		0.37203	l	4.280	15.00	0
bis(2-Ethylhexyl)phthalate	0.954	0.703	0.670	0.655	0.752	0.678	AVRG		0.73532	l	15.308	15.00	0
Di-n-octylphthalate	2.407	1.617	1.813	1.769	1.912	1.886	AVRG		1.90060	1	14.171	30.00	0
Benzo(b)fluoranthene	1.590	1.295	1.314	1.289	1.369	1.318	AVRG		1.36247	l	8.433	15.00	0
Benzo(k)fluoranthene	1.862	1.493	1.356	1.418	1.560	1.428	AVRG		1.51940	l	11.956	15.00	0
Benzo(a)pyrene	1.408	1.215	1.186	1.215	1.298	1.222	AVRG		1.25718	I	6.585	30.00	0
Indeno(1,2,3-cd)pyrene	1.260	0.994	1.073	1.030	1.184	1.113	AVRG		1.10916	l	8.967	15.00	0
Dibenzo(a,h)anthracene	1.504	1.146	1.185	1.206	1.366	1.261	AVRG		1.27797	l	10.514	15.00	0
Benzo(g,h,i)perylene	1.257	1.006	1.069	1.092	1.211	1.097	AVRG		1.12204	l	8.346	15.00	0
N-Nitrosomethylethylamine	0.350	0.333	0.356	0.340	0.350	0.366	AVRG		0.34924	l	3.330	15.00	0
Methyl Methanesulfonate	0.695	0.731	0.728	0.648	0.879	0.631	AVRG		0.71868	I	12.334	15.00	0
N-Nitrosodiethylamine	0.450	0.468	0.462	0.454	0.439	0.421	AVRG		0.44913	l	3.773	15.00	0
Ethyl Methanesulfonate	0.998	1.163	1,129	1.043	1.065	1.000	AVRG		1.06626	I	6.335	15.00	0
N-Nitrosopyrrolidine	0.418	0.403	0.391	0.390	0.367	0.362	AVRG		0.38862	l	5.474	15.00	0
N-Nitrosomorpholine	0.727	0.800	0.674	0.685	0.686	0.636	AVRG		0.70118	1	8.026	15.00	0
o-Toluidine	0.519	0.513	0.486	0.491	0.498	0.526	AVRG		0.50562	l	3.170	15.00	0
Acetophenone	0.503	0.499	0.497	0.460	0.465	0.497	AVRG		0.48692	l	3.902	15.00	0
N-Nitrosopiperidine	0.172	0.168	0.162	0.162	0.158	0.154	AVRG		0.16281		4.061	15.00	0
0,0,0-Triethylphosphorothioa	0.174	0.164	0.145	0.145	0.148	0.149	AVRG		0.15424	l	7.713	15.00	0
2,6-Dichlorophenol	0.310	0.323	0.285	0.271	0.285	0.279	AVRG		0.29209	1	6.802	15.00	0
Hexachloropropene	0.230	0.307	0.260	0.236	0.253	0.254	AVRG		0.25675	1	10.567	15.00	0
A, A-Dimethylphenethylamine	1.100	0.975	0.956	0.912	1.039	1.049	AVRG		1.00497	1	6.911	15.00	0
N-Nitroso-Di-N-Butylamine	0.206	0.189	0.185	0.171	0.200	0.208	AVRG		0.19328	I	7.240	15.00	0
Isosafrole	0.235	0.210	0.210	0.208	0.232]	0.228	AVRG		0.22040	I	5.709	15.00	0
p-Phenylenediamine	0.235	0.259	0.050	0.044	0.195	0.046	AVRG		0.13827	I	73.902	15.00	0
1,2,4,5-Tetrachlorobenzene_	0.617	0.692	0.660	0.665	0.677	0.766	AVRG		0.67958	I	7.249	15.00	0
_	ı	1		1	i		1 1		l	1	ı	1	

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K

Calibration Date(s): 03/03/03 03/03/03

Column: DB5-MS ID: 0.25 (mm) Calibration Time(s): 1254

1900

LAB FILE ID:

RF14: K3773

RF42: K3777

RF70: K3778 RF112: K3776 RF140: K3779

RF28: K3774

ŀ	ļ		l		!	1	1	1	COEFFICENT	s	*RSD	MAX %RS	— SD [
COMPOUND	RF14	RF28	RF42					•	Al	A2	•	OR R^2	
====================================	0.223		0.207		'	0.211	'	======= 	 0.22022] ======= !	6.682	======= 15.000	•
1,4-Naphthoquinone	0.422	•			•	•	AVRG	!	10.38327	!	•	15.000	
1,3-Dinitrobenzene	0.168							1	0.20436	!			-
Pentachlorobenzene	0.499					•		<u> </u>	0.58105	!	•	15.000	
2-Naphthylamine	0.752						•	<u> </u>	0.73884		-	15.000	•
1-Naphthylamine	0.702					•	•	1	10.66292	·	-	15.000	•
2,3,4,6-Tetrachlorophenol	0.313						•	'	0.32567	'	-	1 15.000	•
0,0-diethyl-o-2-pyrazinylpho	0.208	,		'			•	 	10.19853	'	•	15.000	
5-Nitro-O-Toluidine	1835				209170		•	i 0.32111	1.73394	1 01642			
Sulfotepp	0.170	0.1531	0.146					 	0.14740		8.453	•	•
1,3,5-Trinitrobenzene	0.164	0.175		0.154				i	0.16672	¦	10.367		•
Phorate	0.634	0.5341		0.4831			•	i	0.52015	! !	•	15.000	•
Diallate	0.075	•	0.047	0.048				! !	15e-002	! !	•	15.000	•
Phenacetin	0.371		0.345	0.3401			AVRG		10.35890	! !	4.465	•	•
Dimethoate	39133	•	91219		176360				4.74535	' I	0.99528	•	•
4-Aminobiphenyl	0.637	0.6041	•	0.618		0.606			0.62005	'		15.000	•
Pentachloronitrobenzene	0.117	0.125	0.112	•			'		0.11752	 		15.000	•
Pronamide	0.306	0.317	•	0.279		0.289			0.29503	'		15.000	,
Disulfoton	0.394	•	0.343	0.314	0.328	0.316			0.34333	!	9.106	•	•
Methyl Parathion	0.220		0.247	0.226	•				0.22227	' 	•	15.000	•
4-Nitroquinoline-1-0xide	0.021	0.028	0.016	0.013	•	0.011			2e-002	' 	39.751	•	•
Methapyrilene	0.269	0.294	0.214	0.1981	0.215				10.22806		•	15.000	•
Isodrin	0.136	0.141	0.118	0.115	0.122	0.108			0.12345		10.224		
Aramite	5942	12441	13359	17575	34810	•			114.6151		0.99647	•	٠.
p-Dimethylaminoazobenzene	0.200	0.202	•	0.215	•	0.225			0.21244			15.000	,
Chlorobenzilate	0.408	0.3441	0.338	0.347	0.370	0.381			0.36465	' -		15.000	
Kepone	0.051	0.0361	0.016	0.015	0.006	0.008			2e-002			15.000	•
Famphur	0.222	0.116	0.066	0.0381	0.015	0.008			8e-002		104.760	•	•
3,3'-Dimethylbenzidine	0.442	0.425	0.381	0.351	0.359	0.362	-		0.38666		9.801	•	•
2-Acetylaminofluorene	0.378]	0.404	0.361	0.3701	0.415	0.390	•		0.38619			15.000	•
3-Methylcholanthrene	0.375	0.374	0.317	0.310	0.373	0.311	•		0.34347			15.000	•
7,12-Dimethylbenz(A)Anthrace	•	0.380	0.3691	0.4001	0.425	0.416			0.41610		11.868	•	•
Hexachlorophene		1	1	1			AVRG		, 0.41010 j		11.000	0.000	
=======================================		=====[======	=====J	=====1				'' =======				
2-Fluorophenol	1.038	1.138	1.149	1.052	1.276	0.9601			 1.10218			======= 15.000	•
Phenol-D6	1.377	1.426	1.320	1.186	1.267	1.152			1.10218 1.28800	!			•
Nitrobenzene-D5	0.406	0.414	0.394	0.378	0.376	0.398			0.39440	اا	3.854	15.000	•
2-Fluorobiphenyl	1.298	1.254	1.116	1.162	1.142	1.187	-		0.39440 1.19320	!			•
2,4,6-Tribromophenol	0.2351	0.229	0.255	0.238	0.213	0.254	- 1		1.19320 0.23726	l		15.000	•
Terphenyl-D14	0.947	0.790	0.828	0.236	0.213	0.886			0.23726	!		15.000	
		3.,50	0.0201	0.074	0.71/	0.0001	2110		0.8/384		6.552	15.000	ı

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K

Calibration Date(s): 03/03/03 03/03/03

Column: DB5-MS ID: 0.25 (mm) Calibration Time(s): 1254

1900

Average %RSD test result.

Calculate Average %RSD: 10.46354294 Maximum Average %RSD: 15.00000000

Note: Passes Average %RSD Test.

FORM VI SV

SDG No.: CTO233-4

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

Instrument ID: GCMS-K Calibration Date: 03/03/03 Time: 1729

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000	1		1		[
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT] TYPE
2-Picoline	========	!	========	1	!	=======	====
	T .		1.2240000	0.01	!	!	AVRG
Pyridine			1.4010000			•	AVRG
N-Nitrosodimethylamine		·	0.8886000	r		,	AVRG
Aniline	:	!	1.7090000	L .		:	AVRG
Phenol		•	1.4172000				AVRG
Bis(2-Chloroethyl)ether	•	•	1.0449000		0.57	j	AVRG
2-Chlorophenol	:	•	1.1671000		4.11		AVRG
1,3-Dichlorobenzene	1.3170000	1.3146000	1.3146000	0.01	-0.18		AVRG
1,4-Dichlorobenzene	1.3320000	1.2999000	1.2999000	0.01	-2.41	20.00	AVRG
1,2-Dichlorobenzene	1.2190000	1.1867000	1.1867000	0.01	-2.65		AVRG
Benzyl alcohol	0.6070000	0.6090600	0.6090600	0.01	0.34		AVRG
Bis(2-Chloroisopropyl)ether	2.6680000	2.4460000	2.4460000	0.01	-8.32	·	AVRG
2-Methylphenol	0.8410000	0.8976000	0.8976000	0.01	6.73		AVRG
Hexachloroethane	0.5570000	0.5456000	0.5456000	0.01	-2.05	•	AVRG
N-Nitroso-di-n-propylamine			0.7291000		-5.19		AVRG
3&4-Methylphenol			0.8580000		-3.05		AVRG
Nitrobenzene			0.4184000				AVRG
Isophorone			0.6606000				AVRG
2-Nitrophenol	:		0.2025000				
2,4-Dimethyphenol			0.3261000				AVRG
Bis (2-Chloroethoxy) methane			0.5095000		-5.12		AVRG
2,4-Dichlorophenol		0.2826000		0.01	-1.88	20.00	
1,2,4-Trichlorobenzene	:	0.3355000		0.01	-4.69		AVRG
Naphthalene			0.8297000	0.01	-6.46	!	AVRG
4-Chloroaniline			0.3794000		-1.71		AVRG
Hexachlorobutadiene	•	0.2178000		0.01	-3.20		•
4-Chloro-3-Methylphenol		0.2708000		0.01	-2.24	20.00	
2-Methylnaphthalene		0.7197000		0.01	-3.27		AVRG
Hexachlorocyclopentadiene		0.2930000		0.05	0.34		AVRG
				0.05	0.54		DAVA
	l ————— l				1		

page 1 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K

Calibration Date: 03/03/03 Time: 1729

Lab File ID: K3777

Init. Calib. Date(s): 03/03/03 03/03/03

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

AMOUNT AMOUNT RRF42.000 RRF \$DRIFT \$TYPE 2,4,6-Trichlorophenol			RRF42.000					
2,4,6-Trichlorophenol	COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
2,4,6-Trichlorophenol		AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
2,4,5-Trichlorophenol	=======================================	=======	=======	=======	====	======		====
2-Chloronaphthalene	2,4,6-Trichlorophenol	0.4260000	0.4179000	0.4179000	0.01	-1.90	20.00	AVRG
2-Nitroaniline	2,4,5-Trichlorophenol	0.4520000	0.4463000	0.4463000	0.01	-1.26		AVRG
Acenaphthylene 1.4240000 1.3660000 0.01 -4.07 AVRG Avro Dimethyl Phthalate 1.2200000 1.1900000 0.1900000 0.01 -2.46 AVRG Avro	2-Chloronaphthalene	2.1150000	2.0000000	2.0000000	0.01	1	,	AVRG
Dimethyl Phthalate	2-Nitroaniline	0.4040000	0.3983000	0.3983000	0.01			AVRG
AVRG	Acenaphthylene	1.4240000	1.3660000	1.3660000	0.01	-4.07		AVRG
Acenaphthene 1.0130000 0.9725000 0.9725000 0.01 -4.00 20.00 AVRG 3-Nitroaniline 0.2820000 0.2832000 0.2832000 0.01 0.42 AVRG 2,4-Dinitrophenol 1.3620000 1.3440000 1.3440000 0.05 -7.90 AVRG 4-Nitrophenol 0.1110000 9.78e-002 9.78e-002 0.05 -11.89 AVRG 2,4-Dinitrotoluene 0.3720000 0.3806000 0.01 2.31 AVRG 2,4-Dinitrotoluene 41.638000 42.000000 1.0360000 0.01 -0.86 LINR Diethylphthalate 1.1640000 1.1670000 0.11670000 0.01 -0.86 AVRG 2.4-Dinitrotoluene 0.5450000 0.5434000 0.5434000 0.01 -0.29 AVRG 2.4-Dinitroaniline 0.2700000 0.5434000 0.5434000 0.01 -0.29 AVRG 2.4-Dinitroaniline 0.2700000 0.5757000 0.2757000 0.01 2.11 AVRG 2.4-Dinitro-2-Methylphenol 0.1720000 0.1511000 0.1511000 0.01 -1.215 AVRG 2.4-Dinitro-2-Methylphenol 0.1720000 0.4436000 0.4436000 0.01 -1.64 20.00 AVRG 2.2-Diphenylhydrazine 0.9630000 0.9555000 0.9555000 0.01 -1.64 20.00 AVRG 2.2-Diphenylhydrazine 0.9630000 0.9555000 0.9555000 0.01 -0.78 AVRG 2.2-Diphenyl-phenylether 0.2480000 0.2263000 0.2263000 0.01 -1.59 AVRG 2.2-Diphenylhydrazine 0.9930000 0.3287000 0.01 -1.59 AVRG 2.2-Diphenylhydrazine 0.9430000 0.3287000 0.01 -1.59 AVRG 2.2-Diphenylhydrazine 0.9930000 0.9292000 0.01 -1.46 AVRG 2.2-Diphenylhydrazine 0.9930000 0.9292000 0.01 -1.46 AVRG 2.2-Diphenylhydrazine 0.9930000 0.9292000 0.01 -1.59 AVRG 2.2-Diphenylhydrazine 0.9930000 0.9292000 0.01 -1.59 AVRG 2.2-Diphenylhydrazine 0.9930000 0.99292000 0.01 -1.46 AVRG 2.2-Diphenylhydrazine 0.9930000 0.99292000 0.01 -1.46 AVRG 2.2-Diphenylhydrazine 0.9930000 0.903000 0.9030000 0.01 -1.59 AVRG 2.2-Diphenylhydrazine 0.9930000 0.9030000 0.01 -1.59 AVRG 2.2-Diphenylhydrazine 0.9930000 0.9030000 0.0030000 0.01 -1.46 AVRG 2.2-Diphenylhydrazine 0.9930000 0.9030000 0.00000000000000000000000000000	Dimethyl Phthalate	1.2200000	1.1900000	1.1900000	0.01	-2.46		AVRG
A-Nitroaniline	2,6-Dinitrotoluene	0.3100000	0.3006000	0.3006000	0.01	-3.03		AVRG
2,4-Dinitrophenol	Acenaphthene	1.0130000	0.9725000	0.9725000	0.01	-4.00	20.00	AVRG
1.3620000 1.3440000 0.01 -1.32 AVRG 4-Nitrophenol 0.1110000 9.78e-002 9.78e-002 0.05 -11.89 AVRG 2.4-Dinitrotoluene 0.3720000 0.3806000 0.3806000 0.01 2.31 AVRG 2.4-Dinitrotoluene 41.638000 42.000000 1.0360000 0.01 -0.86 LINR Diethylphthalate 1.1640000 1.1670000 1.1670000 0.01 -0.26 AVRG AVRG 4-Chlorophenyl-phenylether 0.5450000 0.5434000 0.5434000 0.01 -0.29 AVRG AVRG 4-Chlorophenyl-phenylether 0.2700000 0.2757000 0.2757000 0.01 2.11 AVRG	3-Nitroaniline	0.2820000	0.2832000	0.2832000	0.01	0.42		AVRG
A-Nitrophenol	2,4-Dinitrophenol	0.1570000	0.1446000	0.1446000	0.05	-7.90		AVRG
AVRG Avro	Dibenzofuran	1.3620000	1.3440000	1.3440000	0.01	-1.32		AVRG
Fluorene	4-Nitrophenol	0.1110000	9.78e-002	9.78e-002	0.05	-11.89		AVRG
Diethylphthalate	2,4-Dinitrotoluene	0.3720000	0.3806000	0.3806000	0.01	2.31		AVRG
A-Chlorophenyl-phenylether 0.5450000 0.5434000 0.5434000 0.01 -0.29 AVRG 4-Nitroaniline 0.2700000 0.2757000 0.2757000 0.01 2.11 AVRG 4.6-Dinitro-2-Methylphenol 0.1720000 0.1511000 0.1511000 0.01 -12.15 AVRG N-Nitrosodiphenylamine/DPA 0.4510000 0.4436000 0.4436000 0.01 -1.64 20.00 AVRG 1.2-Diphenylhydrazine 0.9630000 0.9555000 0.9555000 0.01 -0.78 AVRG 4-Bromophenyl-phenylether 0.2480000 0.2263000 0.2263000 0.01 -8.75 AVRG Pentachlorophenol 0.3340000 0.3287000 0.3287000 0.01 -1.59 AVRG Pentachlorophenol 0.2090000 0.2026000 0.2026000 0.01 -3.06 20.00 AVRG Phenanthrene 0.9270000 0.9162000 0.9162000 0.01 -1.16 AVRG ANTHRACENE 0.9430000 0.9292000 0.9162000 0.01 -1.46 AVRG AVRG AVRG 20.00 A	Fluorene	41.638000	42.000000	1.0360000	0.01	-0.86		LINR
A-Nitroaniline 0.2700000 0.2757000 0.01 2.11 AVRG 4,6-Dinitro-2-Methylphenol 0.1720000 0.1511000 0.1511000 0.01 -12.15 AVRG N-Nitrosodiphenylamine/DPA 0.4510000 0.4436000 0.4436000 0.01 -1.64 20.00 AVRG 1,2-Diphenylhydrazine 0.9630000 0.9555000 0.9555000 0.01 -0.78 AVRG 1,2-Diphenylhydrazine 0.2480000 0.2263000 0.2263000 0.01 -8.75 AVRG	Diethylphthalate	1.1640000	1.1670000	1.1670000	0.01	0.26		AVRG
A,6-Dinitro-2-Methylphenol 0.1720000 0.1511000 0.1511000 0.01 -12.15 AVRG N-Nitrosodiphenylamine/DPA 0.4510000 0.4436000 0.4436000 0.01 -1.64 20.00 AVRG 1,2-Diphenylhydrazine 0.9630000 0.9555000 0.9555000 0.01 -0.78 AVRG 4-Bromophenyl-phenylether 0.2480000 0.2263000 0.2263000 0.01 -8.75 AVRG Hexachlorobenzene 0.3340000 0.3287000 0.3287000 0.01 -1.59 AVRG Pentachlorophenol 0.2090000 0.2026000 0.2026000 0.01 -3.06 20.00 AVRG Phenanthrene 0.9270000 0.9162000 0.9162000 0.01 -1.16 AVRG ANTHRACENE 0.9430000 0.9292000 0.9162000 0.01 -1.46 AVRG Carbazole 0.8120000 0.8092000 0.8092000 0.01 -0.34 AVRG Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	4-Chlorophenyl-phenylether_	0.5450000	0.5434000	0.5434000	0.01	-0.29		AVRG
N-Nitrosodiphenylamine/DPA 0.4510000 0.4436000 0.4436000 0.01 -1.64 20.00 AVRG 1.2-Diphenylhydrazine 0.9630000 0.9555000 0.9555000 0.01 -0.78 AVRG 4-Bromophenyl-phenylether 0.2480000 0.2263000 0.2263000 0.01 -8.75 AVRG	4-Nitroaniline	0.2700000	0.2757000	0.2757000	0.01	2.11	*	AVRG
AVRG AVRG	4,6-Dinitro-2-Methylphenol_	0.1720000	0.1511000	0.1511000	0.01	-12.15		AVRG
A-Bromophenyl-phenylether 0.2480000 0.2263000 0.2263000 0.01 -8.75 AVRG Hexachlorobenzene 0.3340000 0.3287000 0.3287000 0.01 -1.59 AVRG Pentachlorophenol 0.2090000 0.2026000 0.2026000 0.01 -3.06 20.00 AVRG Phenanthrene 0.9270000 0.9162000 0.9162000 0.01 -1.16 AVRG Anthracene 0.9430000 0.9292000 0.9292000 0.01 -1.46 AVRG Carbazole 0.8120000 0.8092000 0.8092000 0.01 -0.34 AVRG Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	N-Nitrosodiphenylamine/DPA	0.4510000	0.4436000	0.4436000	0.01	-1.64	20.00	AVRG
Hexachlorobenzene 0.3340000 0.3287000 0.3287000 0.01 -1.59 AVRG Pentachlorophenol 0.2090000 0.2026000 0.2026000 0.01 -3.06 20.00 AVRG Phenanthrene 0.9270000 0.9162000 0.9162000 0.01 -1.16 AVRG Anthracene 0.9430000 0.9292000 0.9292000 0.01 -1.46 AVRG Carbazole 0.8120000 0.8092000 0.8092000 0.01 -0.34 AVRG Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	1,2-Diphenylhydrazine	0.9630000	0.9555000	0.9555000	0.01	-0.78		AVRG
Pentachlorophenol 0.2090000 0.2026000 0.2026000 0.01 -3.06 20.00 AVRG Phenanthrene 0.9270000 0.9162000 0.9162000 0.01 -1.16 AVRG Anthracene 0.9430000 0.9292000 0.9292000 0.01 -1.46 AVRG Carbazole 0.8120000 0.8092000 0.8092000 0.01 -0.34 AVRG Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	4-Bromophenyl-phenylether	0.2480000	0.2263000	0.2263000	0.01	-8.75		AVRG
Phenanthrene 0.9270000 0.9162000 0.9162000 0.01 -1.16 AVRG AVRG Anthracene 0.9430000 0.9292000 0.9292000 0.01 -1.46 AVRG AVRG Carbazole 0.8120000 0.8092000 0.8092000 0.01 -0.34 AVRG AVRG Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	Hexachlorobenzene	0.3340000	0.3287000	0.3287000	0.01	-1.59		AVRG
Anthracene 0.9430000 0.9292000 0.9292000 0.01 -1.46 AVRG Carbazole 0.8120000 0.8092000 0.8092000 0.01 -0.34 AVRG Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	Pentachlorophenol	0.2090000	0.2026000	0.2026000	0.01	-3.06	20.00	AVRG
Carbazole 0.8120000 0.8092000 0.8092000 0.01 -0.34 AVRG Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	Phenanthrene	0.9270000	0.9162000	0.9162000	0.01	-1.16	·	AVRG
Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	Anthracene	0.9430000	0.9292000	0-9292000	0.01	-1.46		AVRG
Di-n-butylphthalate 1.0830000 1.0630000 1.0630000 0.01 -1.85 AVRG Fluoranthene 0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	Carbazole	0.8120000	0.8092000	0.8092000	0.01	-0.34		AVRG
Fluoranthene0.8770000 0.8784000 0.8784000 0.01 0.16 20.00 AVRG	Di-n-butylphthalate	1.0830000	1.0630000	1.0630000	0.01	-1.85		AVRG
Benzidine 0.2540000 0.2562000 0.2562000 0.01 0.87 AVRG	Fluoranthene	0.8770000	0.8784000	0.8784000	0.01	0.16	20.00	AVRG
	Benzidine	0.2540000	0.2562000	0.2562000	0.01	0.87		AVRG
						İ		j i

page 2 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/03/03 Time: 1729

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

	1	RRF42.000	1	l .	İ	1	Γ
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	TRUOMA	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
	=======	========		==		========	====
Pyrene	1.3560000	1.3330000	1.3330000	0.01	-1.70	j	AVRG
Butylbenzylphthalate			0.5273000		-7.49	ĺ	AVRG
Benzo(a)anthracene	0.9380000	0.8846000	0.8846000	0.01	-5.69	ĺ	AVRG
Chrysene	0.8880000	0.8390000	0.8390000	0.01	-5.52	İ	AVRG
3,3'-Dichlorobenzidine	0.3720000	0.3559000	0.3559000	0.01	-4.33		AVRG
bis(2-Ethylhexyl)phthalate	0.7350000	0.6697000	0.6697000	0.01	-8.88		AVRG
Di-n-octylphthalate	1.9010000	1.8128000	1.8128000	0.01	-4.64	20.00	AVRG
Benzo(b)fluoranthene	1.3620000	1.3141000	1.3141000	0.01	-3.52		AVRG
Benzo(k)fluoranthene	1.5200000	1.3560000	1.3560000	0.01	-10.79		AVRG
Benzo(a)pyrene	1.2570000	1.1859000	1.1859000	0.01	-5.66	20.00	AVRG
Indeno(1,2,3-cd)pyrene	1.1090000	1.0733000	1.0733000	0.01			AVRG
Dibenzo(a,h)anthracene	1.2780000	1.1852000	1.1852000	0.01	-7.26		AVRG
Benzo(g,h,i)perylene	1.1220000	1.0693000	1.0693000	0.01	-4.70		AVRG
N-Nitrosomethylethylamine	0.3490000	0.3558000	0.3558000	0.01	1.95		AVRG
Methyl Methanesulfonate	0.7190000	0.7284800	0.7284800	0.01	1.32		AVRG
N-Nitrosodiethylamine	0.4490000	0.4621800	0.4621800	0.01	2.94		AVRG
Ethyl Methanesulfonate	1.0660000	1.1290000	1.1290000	0.01	5.91	İ	AVRG
N-Nitrosopyrrolidine	0.3880000	0.3910000	0.3910000	0.01	0.77		AVRG
N-Nitrosomorpholine	0.7010000	0.6740000	0.6740000	0.01	-3.85	i	AVRG
o-Toluidine	0.5060000	0.4861000	0.4861000	0.01	-3.93	i	AVRG
Acetophenone	0.4870000	0.4970000	0.4970000	0.01	2.05		AVRG
N-Nitrosopiperidine	0.1630000	0.1623000	0.1623000	0.01	-0.43	İ	AVRG
0,0,0-Triethylphosphorothioa	0.1540000	0.1454000	0.1454000	0.01	-5.58		AVRG
2,6-Dichlorophenol	0.2920000	0.2847000	0.2847000	0.01	-2.50		AVRG
Hexachloropropene	0.2570000	0.2598000	0.2598000	0.01	1.09		AVRG
A, A-Dimethylphenethylamine	1.0050000	0.9557000	0.9557000	0.01	-4.90		AVRG
N-Nitroso-Di-N-Butylamine		0.1854000		0.01	-3.94		AVRG
Isosafrole	0.2200000	0.2100000	0.2100000	0.01	-4.54		AVRG
p-Phenylenediamine	0.1380000	5.05e-002	5.05e-002	0.01	-63.41	!	AVRG
	j	į	i	į			
							'

page 3 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K

Calibration Date: 03/03/03 Time: 1729

Lab File ID: K3777

Init. Calib. Date(s): 03/03/03 03/03/03

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000					
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	TMUOMA	TUNOMA	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
	========	=======	=======	====	======	=======	====
1,2,4,5-Tetrachlorobenzene_	0.6800000	0.6597000	0.6597000	0.01	-2.98	İ	AVRG
Safrole	0.2200000	0.2073000	0.2073000	0.01	-5.77	ĺ	AVRG
1,4-Naphthoquinone	0.3830000	0.3914000	0.3914000	0.01	2.19	İ	AVRG
1,3-Dinitrobenzene	0.2040000	0.2045000	0.2045000	0.01	0.24	j ·	AVRG
Pentachlorobenzene	0.5810000	0.6085000	0.6085000	0.01	4.73	ĺ	AVRG
2-Naphthylamine	0.7390000	0.7558000	0.7558000	0.01	2.27	İ	AVRG
1-Naphthylamine	0.6630000	0.6874000	0.6874000	0.01	3.68	İ	AVRG
2,3,4,6-Tetrachlorophenol	0.3260000	0.3318000	0.3318000	0.01	1.78	İ	AVRG
0,0-diethyl-o-2-pyrazinylpho	0.1980000	0.1926000	0.1926000	0.01	-2.73	į	AVRG
5-Nitro-O-Toluidine	48.086000	42.000000	0.3168000	0.01	14.49	į	2RDR
Sulfotepp	0.1470000	0.1457000	0.1457000	0.01	-0.88		AVRG
1,3,5-Trinitrobenzene	0.1670000	0.1415000	0.1415000	0.01	-15.27		AVRG
Phorate	0.5200000	0.5140000	0.5140000	0.01	-1.15		AVRG
Diallate	5.4e-002	4.69e-002	4.69e-002	0.01	-13.15	j	AVRG
Phenacetin	0.3590000	0.3454000	0.3454000	0.01	-3.79		AVRG
Dimethoate	44.827000	42.000000	0.2998000	0.01	6.73		LINR
4-Aminobiphenyl	0.6200000	0.6317000	0.6317000	0.01	1.89		AVRG
Pentachloronitrobenzene	0.1170000	0.1125000	0.1125000	0.01	-3.85	j	AVRG
Pronamide	0.2950000	0.2936000	0.2936000	0.01	-0.47		AVRG
Disulfoton	0.3430000	0.3428000	0.3428000	0.01	-0.06		AVRG
Methyl Parathion	0.2220000	0.2468000	0.2468000	0.01	11.17		AVRG
4-Nitroquinoline-1-0xide	1.7e-002	1.63e-002	1.63e-002	0.01	-4.12		AVRG
Methapyrilene	0.2280000	0.2145000	0.2145000	0.01	-5.92		AVRG
Isodrin	0.1230000	0.1177000	0.1177000	0.01	-4.31		AVRG
Aramite	37.802000	42.000000	6.37e-002	0.01	-10.0		LINR
p-Dimethylaminoazobenzene	0.2120000	0.2122000	0.2122000	0.01	0.09		AVRG
Chlorobenzilate	0.3650000	0.3377000	0.3377000	0.01	~7.48		AVRG
Kepone	2.2e-002	1.64e-002	1.64e-002	0.01	-25.45		AVRG
Famphur	7.8e-002	6.6e-002	6.6e-002	0.01	-15.38		AVRG
				į			
			· ———— I			·	

page 4 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/03/03 Time: 1729

Lab File ID: K3777 Init. Calib. Date(s): 03/03/03 03/03/03

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000	l	1				1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	İ
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE	
=======================================		=======	=======	====	=======	========	====	
3,3'-Dimethylbenzidine	0.3870000	0.3807000	0.3807000	0.01	-1.63		AVRG	
2-Acetylaminofluorene	0.3860000	0.3608000	0.3608000	0.01	-6.53		AVRG	:
3-Methylcholanthrene	0.3430000	0.3173200	0.3173200	0.01	-7.49		AVRG	i
7,12-Dimethylbenz(A)Anthrace	0.4160000	0.3688400	0.3688400	0.01	-11.34		AVRG	:
Hexachlorophene	0.0000000			0.01	0.00		AVRG	<-
=======================================	=======	=======	=======	=====	======		====	
2-Fluorophenol	1.1020000	1.1492000	1.1492000	0.01	4.28		AVRG	
Phenol-D6	1.2880000	1.3197000	1.3197000	0.01	2,46		AVRG	
Nitrobenzene-D5	0.3940000	0.3942000	0.3942000	0.01	0.05		AVRG	
2-Fluorobiphenyl	1.1930000	1.1160000	1.1160000	0.01	-6.45		AVRG	
2,4,6-Tribromophenol	0.2370000	0.2552000	0.2552000	0.01	7.68		AVRG	
Terphenyl-D14			0.8285000	0.01	-5.20		AVRG	
						i		
· · · · · · · · · · · · · · · · · · ·			· 			·		

page 5 of 5

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/04/03
Received Date: 02/04/03
Extraction Date: 02/05/03
Analysis Date: 03/03/03

Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WG1575-1 Client ID: WG1575-Blank

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
109-06-8	2-Picoline	U	10	1.0	10	10	1
110-86-1	Pyridine	ប	50	1.0	50	50	0.8
62-75-9	N-Nitrosodimethylamine	U	20	1.0	20	20	2
62-53-3	Aniline	ប	10	1.0	10	10	0.6
108-95-2	Phenol	ប	10	1.0	10	10	0.8
111-44-4	Bis(2-Chloroethyl)ether	σ	10	1.0	10	10	0.9
95-57-8	2-Chlorophenol	U	10	1.0	10	10	1.0
541-73-1	1,3-Dichlorobenzene	ប	10	1.0	10	10	0.7
106-46-7	1,4-Dichlorobenzene	U	10	1.0	10	10	0.6
95~50-1	1,2-Dichlorobenzene	σ	10	1.0	10	10	0.7
100-51-6	Benzyl alcohol	ប	. 20	1.0	20	20	2
108-60-1	Bis(2-Chloroisopropyl)ether	ប	10	1.0	10	10	3
95-48-7	2-Methylphenol	U	10	1.0	10	10	0.8
67-72-1	Hexachloroethane	ប	10	1.0	10	10	0.6
621-64-7	N-Nitroso-di-n-propylamine	ប	10	1.0	10	10	0.8
106-44-5	3&4-Methylphenol	U	10	1.0	10	10	2
98-95-3	Nitrobenzene	U	10	1.0	10	10	1
78-59-1	Isophorone	ប	10	1.0	10	10	0.8
88-75-5	2-Nitrophenol	ប	10	1.0	10	10	0.4
105-67-9	2,4-Dimethyphenol	σ	10	1.0	10	10	0.7
111-91-1	Bis(2-Chloroethoxy)methane	υ	10	1.0	10	10	1
120-83-2	2,4-Dichlorophenol	บ	10	1.0	10	10	1
120-82-1	1,2,4-Trichlorobenzene	υ	10	1.0	10	10	0.8
91-20-3	Naphthalene	. U	10	1.0	10	10	0.6
106-47-8	4-Chloroaniline	U	10	1.0	10	10	0.5
87-68-3	Hexachlorobutadiene	U	10	1.0	10	10	0.3
59-50-7	4-Chloro-3-Methylphenol	\mathbf{v}	10	1.0	10	10	0.8
91-57-6	2-Methylnaphthalene	υ	10	1.0	10	10	0.6
77-47-4	Hexachlorocyclopentadiene	σ	10	1.0	10	10	2
88-06-2	2,4,6-Trichlorophenol	U	10	1.0	10	10	0.6
95-95-4	2,4,5-Trichlorophenol	ប	25	1.0	25	25	1
91-58-7	2-Chloronaphthalene	U	10	1.0	10	10	0.3
88-74-4	2-Nitroaniline	U	25	1.0	25	25	0.7
208-96-8	Acenaphthylene	υ	10	1.0	10	10	0.7
131-11-3	Dimethyl Phthalate	σ	10	1.0	10	10	0.9
606-20-2	2,6-Dinitrotoluene	υ	10	1.0	10	10	0.5
83-32-9	Acenaphthene	U	10	1.0	10	10	0.5
99-09-2	3-Nitroaniline	Ū	25	1.0	25	25	0.9
51-28-5	2,4-Dinitrophenol	U	25	1.0	25	25	5
132-64-9	Dibenzofuran	U	10	1.0	10	10	0.7
100-02-7	4-Nitrophenol	υ	25	1.0	25	25	3
121-14-2	2,4-Dinitrotoluene	U	10	1.0	10	10	0.9
86-73-7	Fluorene	υ	10	1.0	10	10	0.8

Page 01 of 02 K3780.D

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CT0233

PO No:

Sample Date: 02/04/03 $Qe_{03/03/63}$ Received Date: 02/04/03 Extraction Date: 02/05/03

Analysis Date: 03/03/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WG1575-1

Client ID: WG1575-Blank

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adi.poL	Adj.MDL
84-66-2	Diethylphthalate	บ	10	1.0	10	10	1
7005-72	2-3 4-Chlorophenyl-phenylether	· ʊ	10	1.0	10	10	0.8
100-01-	6 4-Nitroaniline	ប	25	1.0	25	25	1
534-52-	1 4,6-Dinitro-2-Methylphenol	U	25	1.0	25	25	3
86-30-6	N-Nitrosodiphenylamine/DPA	υ	10	1.0	10	10	1.0
122-66-	7 1,2-Diphenylhydrazine	υ	20	1.0	20	20	4
101-55-	3 4-Bromophenyl-phenylether	υ	10	1.0	10	10	0.7
118-74-	1 Hexachlorobenzene	ซ	10	1.0	10	10	0.8
87-86-5	Pentachlorophenol	U	25	1.0	25	25	2
85-01-8	Phenanthrene	ប	10	1.0	10	10	0.8
120-12-	7 Anthracene	υ	10	1.0	10	10	0.7
86-74-8	Carbazole	U	10	1.0	10	10	0.9
84-74-2	Di-n-butylphthalate	υ	10	1.0	10	10	2
206-44-	0 Fluoranthene	Ū	10	1.0	10	10	0.8
92-87-5	Benzidine	υ	50	1.0	50	50	6
129-00-	0 Pyrene	υ	10	1.0	10	10	1
85-68-7	Butylbenzylphthalate	U	10	1.0	10	10	1
56-55-3	Benzo(a)anthracene	ซ	10	1.0	10	10	1.0
218-01-	9 Chrysene	ប	10	1.0	10	10	1
91-94-1	3,3'-Dichlorobenzidine	U	10	1.0	10	10	0.8
117-81-	7 bis(2-Ethylhexyl)phthalate	ប	10	1.0	10	10	1
117-84-		ប	10	1.0	10	10	1
205-99-	2 Benzo(b) fluoranthene	υ	10	1.0	10	10	1
207-08-	9 Benzo(k) fluoranthene	ΰ	10	1.0	10	10	2
50-32-8	Benzo(a)pyrene	ซ	10	1.0	10	10	1
193-39-	5 Indeno(1,2,3-cd)pyrene	υ	10	1.0	10	10	1
53-70-3	Dibenzo(a,h)anthracene	υ	10	1.0	10	10	1
191-24-	<pre>Benzo(g,h,i)perylene</pre>	U	10	1.0	10	10	1
10595-9	5-6 N-Nitrosomethylethylamine	U	10	1.0	10	10	1.0
66-27-3	Methyl Methanesulfonate	U	20	1.0	20	20	1
55-18-5	N-Nitrosodiethylamine	U	20	1.0	20	20	0.7
62-50-0	Ethyl Methanesulfonate	U	10	1.0	10	10	1
930-55-	2 N-Nitrosopyrrolidine	U	10	1.0	10	10	0.9
59-89-2	N-Nitrosomorpholine	υ	10	1.0	10	10	1.0
95-53-4	o-Toluidine	U	10	1.0	10	10	0.7
98-86-2	Acetophenone	U	10	1.0	10	10	0.7
100-75-	4 N-Nitrosopiperidine	υ	10	1.0	10	10	0.6
126-68-	1 0,0,0-Triethylphosphorothioat	t U	20	1.0	20	20	0.8
87-65-0	2,6-Dichlorophenol	υ	10	1.0	10	10	0.6
1888-71	-7 Hexachloropropene	บ	10	1.0	10	10	0.6
122-09-	8 A,A-Dimethylphenethylamine	U	10	1.0	10	10	10
924-16-	N-Nitroso-Di-N-Butylamine	ប	10	1.0	10	10	0.7
120-58-		U	20	1.0	20	20	0.8

Page 02 of 03 K3780.D

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CT0233

PO No:

Sample Date: \(\frac{\text{92/04/\text{\tinc{\text{\tinc{\tint{\text{\tin}\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tet

Analysis Date: 03/03/03 Report Date: 03/06/2003

Matrix: WATER % Solids: NA

Lab ID: WG1575-1

Client ID: WG1575-Blank

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3520

Analyst: JJC

Analysis Method: SW846 8270C

Lab Prep Batch: WG1575

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	p-Phenylenediamine	U	10	1.0	10	10	2
95-94-3	1,2,4,5-Tetrachlorobenzene	U	10	1.0	10	10	0.6
94-59-7	Safrole	U	10	1.0	10	10	1
130-15-4	1,4-Naphthoquinone	บ	10	1.0	10	10	1
99-65-0	1,3-Dinitrobenzene	U ·	10	1.0	10	10	10
608-93-5	Pentachlorobenzene	U	10	1.0	10	10	0.9
	2-Naphthylamine	U	10	1.0	10	10	1
134-32-7	1-Naphthylamine	σ	10	1.0	10	10	1
58-90-2	2,3,4,6-Tetrachlorophenol	U	10	1.0	10	10	1.0
	0,0-diethyl-o-2-pyrazinylphos	U	20	1.0	20	20	1.0
99-55-8	5-Nitro-O-Toluidine	U	20	1.0	20	20	0.4
	Sulfotepp	U	10	1.0	10	10	2
99-35-4	1,3,5-Trinitrobenzene	U	10	1.0	10	10	2
298-02-2	Phorate	Ü	10	1.0	10	10	0.6
2303-16-4	Diallate	Ū	20	1.0	20	20	0.6
62-44-2	Phenacetin	U	10	1.0	10	10	1
60-51-5	Dimethoate	U	10	1.0	10	10	1
92-67-1	4-Aminobiphenyl	Ū	10	1.0	10	10	0.2
82-68-8	Pentachloronitrobenzene	U	10	1.0	10	10	0.9
23950-58-5	Pronamide	U	10	1.0	10	10	0.9
298-04-4	Disulfoton	U	10	1.0	10	10	0.6
298-00-0	Methyl Parathion	U	10	1.0	10	10	0.6
	4-Nitroquinoline-1-Oxide	U	20	1.0	20	20	20
91-80-5	Methapyrilene	U	10	1.0	10	10	4
465-73-6	Isodrin	U	20	1.0	20	20	1
140-57-8	Aramite	U	20	1.0	20	20	3
	p-Dimethylaminoazobenzene	υ .	20	1.0	20	20	0.9
510-15-6	Chlorobenzilate	υ	20	1.0	20	20	1
143-50-0	Kepone	U	10	1.0	10	10	10
52-85-7	Famphur	ប	10	1.0	10	10	2
119-93-7	3,3'-Dimethylbenzidine	U	20	1.0	20	20	2
53-96-3	2-Acetylaminofluorene	Ū	10	1.0	10	10	0.9
56-49-5	3-Methylcholanthrene	U	10	1.0	10	10	0.7
57-97-6	7,12-Dimethylbenz(A)Anthracen	U	10	1.0	10	10	2
70-30-4	Hexachlorophene	U	10	1.0	10	10	10
367-12-4	2-Fluorophenol		77%				
13127-88-3	Phenol-D6		96%				
4165-60-0	Nitrobenzene-D5		86%				
321-60-8	2-Fluorobiphenyl		89%				
118-79-6	2,4,6-Tribromophenol		99%				
1718-51-0	Terphenyl-D14		93%				

Page 03 of 03 K3780.D

Data File: \\Target_server\GG\chem\gcms-k.i\k030303.b\K3780.D Page 5

Report Date: 06-Mar-2003 18:34

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name:

Lab Smp Id: WG1575-1

Operator : JJC Sample Location:

Sample Matrix: WATER

Analysis Type: SV Inj Date: 03-MAR-2003 19:45

Client SDG: 021497

Client Smp ID: WG1575-Blank Sample Date: 04-FEB-2003 Sample Point:

Date Received: 04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (uq/L or uq/KG) ug/L

Number TICs found: 0

				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	=======	******	====

FORM 2 WATER SEMIVOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab C

Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

1	CLIENT	LAB	S1	S2	S3	S4	l ss	l se	S7	S8	TOT
	SAMPLE ID	SAMPLE ID	2FP#				TBP#		#	#	OUT
		=======================================	====	====	====	====	====	====	====	====	i === i
01	WG1575-BLANK	WG1575-1	77	96	86	89	99	93			i oi
02	S1SW-2-0103	WT0246-11	15*	45	61	79	44	41			1
03	S1MW-7-0103	WT0233-6	46	68	80	79	78	76			0
04	0103-DUP-01	WT0233-7	71	83	68	81	120	82			0
05	S1SW-1-0103	WT0246-10	64	70	66	74	110	37			0
06	WG1575-LCS	WG1575-2	89	93	72	83	110	75			0
07	WG1575-LCSD	WG1575-3	80	72	81	73	68	97			0
80		·									!!
09			<u> </u>					ļ			<u> </u>
10			ļ								!!
11			!					ļ			!!
12			!		!			ļ			!!
13			!			<u> </u>		!			ļ!
14		. 						 -			
15			<u> </u>		ļ						
16	•							ļ			
17			!		ļ			!			¦¦
18											
19					 						<u> </u>
20			 			l					<u> </u>
21			 			·		ļ			
22						ļ					<u> </u>
23			!		¦						
24 25			[!	!					
25 26							 	¦			
26 27						l					
28			<u> </u>					¦			
28		l	l	l	l	·	ı	l			I I

QC LIMITS
S1 (2FP) = 2-Fluorophenol (20- 95)
S2 (PHL) = Phenol-D6 (10-115)
S3 (NBZ) = Nitrobenzene-D5 (36-117)
S4 (FBP) = 2-Fluorobiphenyl (47-114)
S5 (TBP) = 2,4,6-Tribromophenol (20-137)
S6 (TPH) = Terphenyl-D14 (35-126)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D Surrogate diluted out

page 1 of 1

FORM II SV-1

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): K3777

Date Analyzed: 03/03/03

Instrument ID: GCMS-K

Time Analyzed: 1729

					,			 ,
- 1			IS1(DCB)		IS2 (NPT)		IS3 (ANT)	
I			AREA #	RT #	AREA #	RT #	AREA #	RT #
Ī		========	=========	======	========	======		======
i	12 HOUR STD	•	137925	6.20	385544	9.02	197087	13.02
i	UPPER LIMIT		275850	6.70	771088	9.52	394174	13.52
i	LOWER LIMIT		68963	5.70	192772	8.52	98544	12.52
'	*****	=======================================	====================================					
	CLIENT SAMPLE	LAB SAMPLE	i İ					1
	l ID	ID	i i					1
	 	, 	====================================				========	
01	 WG1575-BLANK	WG1575~1	156055	6.18	482533	9.00	277224	13.01
02	\ S1SW-2-0103	WT0246-11	101674	6.19	285064	9.00	139850	13.00
	S1MW-7-0103	WT0233-6	97502	6.19	279882	9.00	157173	13.00
		İ	1l		·		Íl	
					11		l	
06			i		l		l	
			i!		ll		l	
		1					l	
		1			l		l	
	1	1			i			
		1	1		ll		<u> </u>	
			1				ll	
	1		1		i			
14		1	1		l		l	I
		i			I		! 1	
16		1					li	
17		1					l	
18		1	I				l	1
19	·				1		l	1
20	·	i	1					
~ 0	I		1					

IS1 (DCB) = 1,4-Dichlorobenzene-D4

IS2 (NPT) = Naphthalene-D8
IS3 (ANT) = Acenaphthene-D10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

PT UPPER LIMIT = + 0.50 minutes of internal standard

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): K3777

Date Analyzed: 03/03/03

Instrument ID: GCMS-K

Time Analyzed: 1729

,			= = ((PTPT)			L TOE (anti)			TOC (PDI			
			IS4 (PHN)			IS5 (CRY)		, ļ	IS6 (PRY			.,
			AREA ‡	RT	#	AREA #	ì	#	AREA	•••		#
========	-======	:=======	========	: ====		=======	=====		======		=====	
12 HOUR S	STD	,	289743	16.		199646	22.56	!	11387		25.6	
UPPER LI	TIN		579486	16.		399292	23.06		22774		26.1	
LOWER LIN	TIN		144872	15.	92	99823	22.06		5693	5	25.1	L1
===========	=========		=======================================					-			*****	
CLIENT	SAMPLE	LAB SAMPLE		i		1	į	-		- 1		
ID		ID	İ	1		t	Į			ł		
==========		======================================		-=====		=========	======	-	******	l	======	
01 WG1575-BLANK		WG1575-1	364792	16.4	0	186551	22.55	1	11405	7	25.61	L .·
02 S1SW-2-0103		WT0246-11	182894	16.4	0	156980	22.56	- 1	8568	1	25.60)
03 S1MW-7-0103		WT0233-6	210867	16.4	0	138396	22.54	- 1	8383	3	25.60	3
04		.	1	.			l	!_		I		
05		.	l	.1		l	l	1_		I		
06		.l <u></u>	I	.1		l	l <u></u>	!_				
07		.				1	l <u></u>	1_				
08		.l	l	.		1	l	_ _				
09	· · · · · · · · · · · · · · · · · · ·	<u> </u>	l			l	l <u></u>	1_				
10		<u> </u>	l	.		l	l	!_				
11			l	.1		l		!_		l		
12			l	.		l	l	_		!		
13		1	1	.1		l		_ _				
14			l <u></u>			1	l	!_				
15			İ			l	l	-				
16		.1	l			1	l	_		I		
17		.	l	.1		l	l	_				
18			l	.		I	l	_ _		[
19		<u> </u>	l			1	1	1_				
20		.1	l			<u> </u>	l	_		1		

IS4 (PHN) = Phenanthrene-D10

IS5 (CRY) = Chrysene-D12

IS6 (PRY) = Perylene-D12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT

RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: KD027

DFTPP Injection Date: 03/04/03

Instrument ID: GCMS-K

DFTPP Injection Time: 1123

-/-	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
m/e	ION ADONDANCE CRITERIA	ABONDANCE
51	30.0 - 60.0% of mass 198	52.1
! !	Less than 2.0% of mass 69	0.6 (1.0)1
68		60.3
69	Less than 100.0% of mass 198	
70	Less than 2.0% of mass 69	0.0 (0.0)1
127	40.0 - 60.0% of mass 198	40.6
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.4
275	10.0 - 30.0% of mass 198	28.6
365	1.0 - 100.0% of mass 198	4.3
441	0.0 - 100.0% of mass 443	13.0 (94.4)2
442	40.0 - 100.0% of mass 198	71.9
443	17.0 - 23.0% of mass 442	13.7 (19.1)3
i i		

1-Value is % mass 69 3-Value is % mass 442 2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

1	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	==========	========	========	=======================================
01		SSTD042K0304	K3789	03/04/03	1412
02	0103-DUP-01	WT0233-7	K3793	03/04/03	1714
03	S1SW-1-0103	WT0246-10	K3794	03/04/03	1759
04	WG1575-LCS	WG1575-2	K3795	03/04/03	1845
05					
06					
07			<u> </u>		<u></u>
80					
09					
10					
11					
12		l			
13					
14					
15					
16					
17					
18					
19					
20	7 -6 1				

page 1 of 1

FORM V SV

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/04/03 Time: 1412

Lab File ID: K3789 Init. Calib. Date(s): 03/03/03 03/03/03

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000			<u> </u>		
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
•	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
	========		=======	=====	======	======	====
2-Picoline	1.1440000	0.7737500	0.7737500	0.01	-32.36		AVRG
Pyridine	1.3450000	0.7810900	0.7810900	0.01	-41.93		AVRG
N-Nitrosodimethylamine	0.9190000	0.5329200	0.5329200	0.01	-42.01		AVRG
Aniline	1.6650000	1.4293000	1.4293000	0.01	-14.16		AVRG
Phenol	1.3510000	1.2640000	1.2640000	0.01	-6. 44	20.00	AVRG
Bis(2-Chloroethyl)ether	1.0390000	0.9526800	0.9526800	0.01	-8.31		AVRG
2-Chlorophenol	1.1210000	1.0062000	1.0062000	0.01	-10.24		AVRG
1,3-Dichlorobenzene	1.3170000	1.2209000	1.2209000	0.01	-7.30	•	AVRG
1,4-Dichlorobenzene	1.3320000	1.2388000	1.2388000	0.01	-7.00	20.00	AVRG
1,2-Dichlorobenzene	1.2190000	1.1588000	1.1588000	0.01	-4.94		AVRG
Benzyl alcohol	0.6070000	0.5602600	0.5602600	0.01	-7.70		AVRG
Bis(2-Chloroisopropyl)ether	2.6680000	2.6722000	2.6722000	0.01	0.16		AVRG
2-Methylphenol	0.8410000	0.7640600	0.7640600	0.01	-9.15		AVRG
Hexachloroethane	0.5570000	0.5426000	0.5426000	0.01	-2.58		AVRG
N-Nitroso-di-n-propylamine_	0.7690000	0.6985800	0.6985800	0.05	-9.16		AVRG
3&4-Methylphenol	0.8850000	0.8271700	0.8271700	0.01	-6.53		AVRG
Nitrobenzene	0.4120000	0.3565800	0.3565800	0.01	-13.45		AVRG
Isophorone	0.6620000	0.6207900	0.6207900	0.01	-6.22		AVRG
2-Nitrophenol	0.2070000	0.1781200	0.1781200	0.01	-13.95	20.00	AVRG
2,4-Dimethyphenol	0.3430000	0.3171100	0.3171100	0.01	-7.55		AVRG
Bis (2-Chloroethoxy) methane_	0.5370000	0.4889800	0.4889800	0.01	-8.94		AVRG
2,4-Dichlorophenol	0.2880000	0.2772200	0.2772200	0.01	-3.74	20.00	AVRG
1,2,4-Trichlorobenzene	0.3520000	0.3393100	0.3393100	0.01	-3.60		AVRG
Naphthalene	0.8870000	0.7974300	0.7974300	0.01	-10.10		AVRG
4-Chloroaniline	0.3860000	0.3472600	0.3472600	0.01	-10.04		AVRG
Hexachlorobutadiene	0.2250000	0.2286100	0.2286100	0.01	1.60	20.00	AVRG
4-Chloro-3-Methylphenol	0.2770000	0.2561000	0.2561000	0.01	-7.54	20.00	AVRG
2-Methylnaphthalene	0.7440000	0.7004600	0.7004600	0.01	-5.85		AVRG
Hexachlorocyclopentadiene	0.2920000	0.1696600	0.1696600	0.05	-41.90		AVRG
							j i

page 1 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/04/03 Time: 1412

Lab File ID: K3789 Init. Calib. Date(s): 03/03/03 03/03/03

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

COMPOUND	RRF or	RRF42.000				,	1 1
	KKE OL	or	CCAL	MIN	land or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
	=======		=======	=====	======	========	====
,4,6-Trichlorophenol	0.4260000	0.4029200	0.4029200	0.01	-5.42	20.00	AVRG
,4,5-Trichlorophenol	0.4520000	0.4336100	0.4336100	0.01	-4.07	j	AVRG
-Chloronaphthalene	2.1150000	1.9506000	1.9506000	0.01	-7.77	i	AVRG
-Nitroaniline	0.4040000	0.3757600	0.3757600	0.01	-6.99		AVRG
cenaphthylene	1.4240000	1.3644000	1.3644000	0.01			AVRG
imethyl Phthalate	1.2200000	1.1921000	1.1921000	0.01	-2.29		AVRG
,6-Dinitrotoluene	0.3100000	0.2941700	0.2941700	0.01			AVRG
cenaphthene	1.0130000	1.0035000	1.0035000	0.01	-0.94	20.00	<u>,</u> '
-Nitroaniline	0.2820000	0.2611800	0.2611800	0.01	-7.38		AVRG
,4-Dinitrophenol	0.1570000	0.1537800	0.1537800	0.05			AVRG
ibenzofuran	1.3620000	1.3846000	1.3846000	0.01	1.66		AVRG
-Nitrophenol	0.1110000	9.6e-002	9.6e-002	0.05	-13.51		AVRG
,4-Dinitrotoluene	0.3720000	0.3770800	0.3770800	0.01	1.36		AVRG
luorene	42.532000	42.000000	1.0564000	0.01	1.27		LINR
iethylphthalate			1.2122000		4.14		AVRG
-Chlorophenyl-phenylether	0.5450000	0.5732500	0.5732500	0.01	5.18		AVRG
-Nitroaniline	0.2700000	0.2703900	0.2703900	0.01	0.14		AVRG
,6-Dinitro-2-Methylphenol	0.1720000	0.1636200	0.1636200	0.01	-4.87		AVRG
-Nitrosodiphenylamine/DPA	0.4510000	0.4068300	0.4068300	0.01	-9.79	20.00	
,2-Diphenylhydrazine			0.8820000	0.01	-8.41		AVRG
-Bromophenyl-phenylether	0.2480000	0.2394500	0.2394500	0.01	-3.45		AVRG
exachlorobenzene	0.3340000	0.3339200	0.3339200	0.01	-0.02		AVRG
entachlorophenol	0.2090000	0.2286800	0.2286800	0.01	9.42	20.00	, ,
henanthrene		0.8799600		0.01	-5.07		AVRG
nthracene		0.9130800		0.01	-3.17	i	AVRG
arbazole			0.8458200	0.01	4.16		AVRG
i-n-butylphthalate		1.1849000		0.01	9.41		AVRG
luoranthene		1.0322000		0.01	17.70	20.00	
enzidine		0.1957400		0.01	-22.94		AVRG
<u> </u>	i i		1	i		ĺ	

page 2 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/04/03 Time: 1412

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

	1	RRF42.000					1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	TRUOMA	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
		=======	=======	=====	======	========	====
Pyrene	1.3560000	1.0863000	1.0863000	0.01	-19.89		AVRG
Butylbenzylphthalate	0.5700000	0.4911300	0.4911300	0.01	-13.84		AVRG
Benzo(a)anthracene	0.9380000	0.8461900	0.8461900	0.01	-9.79		AVRG
Chrysene	0.8880000	0.8557000	0.8557000	0.01	-3.64		AVRG
3,3'-Dichlorobenzidine	0.3720000	0.3567100	0.3567100	0.01	-4.11		AVRG
bis(2-Ethylhexyl)phthalate	0.7350000	0.6636800	0.6636800	0.01	-9.70		AVRG
Di-n-octylphthalate	1.9010000	1.5357000	1.5357000	0.01	-19.22	20.00	AVRG
Benzo(b)fluoranthene	1.3620000	1.2559000	1.2559000	0.01	-7.79		AVRG
Benzo(k)fluoranthene	1.5200000	1.4089000	1.4089000	0.01	-7.31		AVRG
Benzo(a)pyrene	1.2570000	1.1554000	1.1554000	0.01	-8.08	20.00	AVRG
Indeno(1,2,3-cd)pyrene	1.1090000	1.0825000	1.0825000	0.01	-2.39		AVRG
Dibenzo(a,h)anthracene	1.2780000	1.1820000	1.1820000	0.01	-7.51		AVRG
Benzo(g,h,i)perylene	1.1220000	1.0631000	1.0631000	0.01	-5.25		AVRG
N-Nitrosomethylethylamine	0.3490000	0.3341700	0.3341700	0.01	-4.25		AVRG
Methyl Methanesulfonate	0.7190000	0.6239800	0.6239800	0.01	-13.22		AVRG
N-Nitrosodiethylamine	0.4490000	0.3696800	0.3696800	0.01	-17.67		AVRG
Ethyl Methanesulfonate	1.0660000	0.9520200	0.9520200	0.01	-10.69		AVRG
N-Nitrosopyrrolidine	0.3880000	0.3385700	0.3385700	0.01	-12.74		AVRG
N-Nitrosomorpholine	0.7010000	0.6481800	0.6481800	0.01	-7.54		AVRG
o-Toluidine	0.5060000	0.4333900	0.4333900	0.01	-14.35		AVRG
Acetophenone	0.4870000	0.4232200	0.4232200	0.01	-13.10		AVRG
N-Nitrosopiperidine	0.1630000	0.1397900	0.1397900	0.01	-14.24		AVRG
0,0,0-Triethylphosphorothioa	0.1540000	0.1462900	0.1462900	0.01	-5.01		AVRG
2,6-Dichlorophenol	0.2920000	0.2731200	0.2731200	0.01	-6.46		AVRG
Hexachloropropene	0.2570000	0.2537500	0.2537500	0.01	-1.26	j	AVRG
A, A-Dimethylphenethylamine	1.0050000	0.9364900	0.9364900	0.01	-6.82		AVRG
N-Nitroso-Di-N-Butylamine	0.1930000	0.1719900	0.1719900	0.01	-10.89	İ	AVRG
Isosafrole	0.2200000	0.2028100	0.2028100	0.01	-7.81	j	AVRG
p-Phenylenediamine	0.1380000	0.1545400	0.1545400	0.01	11.99		AVRG

page 3 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/04/03 Time: 1412

Lab File ID: K3789 Init. Calib. Date(s): 03/03/03 03/03/03

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000				1	
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
=======================================			=======	=====	======		====
1,2,4,5-Tetrachlorobenzene_	0.6800000	0.6752800	0.6752800	0.01	-0.69	į	AVRG
Safrole	0.2200000	0.2154300	0.2154300	0.01	-2.08	İ	AVRG
1,4-Naphthoquinone	0.3830000	0.4165700	0.4165700	0.01	8.76	Ì	AVRG
1,3-Dinitrobenzene	0.2040000	0.1834400	0.1834400	0.01	-10.08	ĺ	AVRG
Pentachlorobenzene	0.5810000	0.6508600	0.6508600	0.01	12.02	İ	AVRG
2-Naphthylamine	0.7390000	0.6635300	0.6635300	0.01	-10.21	İ	AVRG
1-Naphthylamine	0.6630000	0.5909700	0.5909700	0.01	-10.86	ĺ	AVRG
2,3,4,6-Tetrachlorophenol	0.3260000	0.3531400	0.3531400	0.01	8.32		AVRG
0,0-diethyl-o-2-pyrazinylpho	0.1980000	0.2162800	0.2162800	0.01	9.23	į	AVRG
5-Nitro-O-Toluidine	40.460000	42.000000	0.3172600	0.01	-3.67		2RDR
Sulfotepp	0.1470000	0.1378800	0.1378800	0.01	-6.20		AVRG
1,3,5-Trinitrobenzene	0.1670000	0.1430600	0.1430600	0.01	-14.34		AVRG
Phorate	0.5200000	0.4772100	0.4772100	0.01	-8.23		AVRG
Diallate	5.4e-002	4.91e-002	4.91e-002	0.01	-9.07		AVRG
Phenacetin	0.3590000	0.3218600	0.3218600	0.01	-10.34	۸•.	AVRG
Dimethoate	45.123000	42.000000	0.2935700	0.01	7.44		LINR
4-Aminobiphenyl	0.6200000	0.5877900	0.5877900	0.01	-5.20		AVRG
Pentachloronitrobenzene	0.1170000	0.1223800	0.1223800	0.01	4.60		AVRG
Pronamide	0.2950000	0.2876500	0.2876500	0.01	-2.49		AVRG
Disulfoton	0.3430000	0.3413600	0.3413600	0.01	-0.48		AVRG
Methyl Parathion	0.2220000	0.2457600	0.2457600	0.01	10.70		AVRG
4-Nitroquinoline-1-Oxide	1.7e-002	2.73e-002	2.73e-002	0.01	60.59		AVRG
Methapyrilene	0.2280000	0.2783900	0.2783900	0.01	22.10		AVRG
Isodrin	0.1230000	0.1513800	0.1513800	0.01	23.07		AVRG
Aramite	36.717000	42.000000	5.98e-002	0.01	-12.58		LINR
p-Dimethylaminoazobenzene	0.2120000	0.1810600	0.1810600	0.01	-14.59		AVRG
Chlorobenzilate	0.3650000	0.3228600	0.3228600	0.01	-11.54		AVRG
Kepone	2.2e-002	4.22e-002	4.22e-002	0.01	91.82		AVRG
Famphur	7.8e-002	0.1516000	0.1516000	0.01	94.36		AVRG
	j		Ì	j			
			,				

page 4 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/04/03 Time: 1412

Init. Calib. Times: 1254

1900

GC Column: DB5-MS

ID: 0.25 (mm)

·	l	RRF42.000			1	ī	
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
	=======	=======	=======	=====	======	=======	====
3,3'-Dimethylbenzidine	0.3870000	0.3448300	0.3448300	0.01	-10.90	!	!
2-Acetylaminofluorene		0.3685700		0.01	!	ŗ	AVRG
3-Methylcholanthrene	0.3430000	0.3789200	0.3789200	0.01	10.47	1	AVRG
7,12-Dimethylbenz(A)Anthrace	0.4160000	0.3480900	0.3480900	0.01		•	AVRG
Hexachlorophene	0.0000000		0.5480500	!	-16.32		AVRG
	=========			0.01	0.00		AVRG
2-Fluorophenol	1 1020000	0.9812000	========	=====	======	=======	====
Phenol-D6	1 200000	10.9612000	0.9812000		-10.96		AVRG
Nitrobenzene-D5	1.2000000	1.1898000	1.1898000	0.01	-7.62		AVRG
2-Fluorobiphenyl		0.3395300		0.01	-13.82		AVRG
		1.1254000		0.01	-5.67		AVRG
2,4,6-Tribromophenol		0.2859800		0.01	20.67	i	AVRG
Terphenyl-D14	0.8740000	0.7425500	0.7425500	0.01	-15.04	i	AVRG
			İ	i	j		

page 5 of 5

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Lab File ID (Standard): K3789 Date Analyzed: 03/04/03

Instrument ID: GCMS-K Time Analyzed: 1412

	IS1 (DCB)					
l .		ļ	IS2 (NPT)	1	IS3 (ANT)	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
_======================================	=== ===================================	======	========	======	=======	=====
12 HOUR STD	147037	6.15	443304	8.96	230182	12.96
UPPER LIMIT	294074	6.65	886608	9.46	460364	13.46
LOWER LIMIT	73519	5.65	221652	8.46	115091	12.46
					====================================	
CLIENT SAMPLE LAB SAMP	LE		1		ŀ	
ID ID	İ		1		İ	
	.==== =================================	*****			====================================	
0103-DUP-01 WT0233-7	74285	6.15	264747	8.97	152728	12.95
2 S1SW-1-0103 WT0246-10	77417	6.15	246288	8.96	149903	12.96
3 WG1575-LCS WG1575-2	122214	6.16	544373	8.98	344438	12.97
4 [İ	_	İ		İ	
5						
6			i		1	
7						
B	1		1		i	
9					1	
01			1		 I	
1						
2	i				i	
3					i	
4	.					
5	 				i	
6	i i		· }			
7			ļ			
81	1		[·	
91						
0					·	

IS1 (DCB) = 1,4-Dichlorobenzene-D4

IS2 (NPT) = Naphthalene-D8

IS3 (ANT) = Acenaphthene-D10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT

RT LOWER LIMIT = - 0.50 minutes of internal standard RT

- # Column used to flag internal standard area values with an asterisk.
- * Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): K3789

Date Analyzed: 03/04/03

Instrument ID: GCMS-K

Time Analyzed: 1412

· · · · · · · · · · · · · · · · · · ·						
	IS4 (PHN)	1	IS5 (CRY)		IS6 (PRY)	1
	AREA #	RT #	AREA #	RT #	AREA #	RT #
=======================================		======	=======	======	========	======
12 HOUR STD	375068	16.35	363415	22.49	235499	25.53
UPPER LIMIT	750136	16.85	726830	22.99	470998	26.03
LOWER LIMIT	187534	15.85	181708	21.99	117750	25.03
=======================================					******	
CLIENT SAMPLE LAB SAMPLE	1			1	·	1
ID ID	l i		[]	1	j	i
=======================================			=======================================		=========	
01 0103-DUP-01 WT0233-7	244313	16.34	209788	22.48	139400	25.53
02 S1SW-1-0103 WT0246-10	245479	16.34	198791	22.48	121573	25.54
03 WG1575~LCS WG1575-2	507530	16.37	491437	22.51	343180	25.55
04 [ll					i
05	lt			1	1	
06	ll				[i
07	li					
08	ll		<u> </u>		1	
09	li					1
10	l <u></u> l	1				
11	ll			1		
12	l	1	I	l		
13		1	1			
14		l	l	1	1	
15		l		1		!
16	ll		1	1		{
17				1		
18	ll			I		
19	lt		1	1		1
20			1	1		

IS4 (PHN) = Phenanthrene-D10

IS5 (CRY) = Chrysene-D12

IS6 (PRY) = Perylene-D12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

- # Column used to flag internal standard area values with an asterisk.
- * Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: KD028

DFTPP Injection Date: 03/05/03

Instrument ID: GCMS-K

DFTPP Injection Time: 1055

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE				
=====	**=====================================	=======================================				
51	30.0 - 60.0% of mass 198	57.3				
68	Less than 2.0% of mass 69	0.0 (0.0)1				
69	Less than 100.0% of mass 198	72.4				
70	Less than 2.0% of mass 69	0.0 (0.0)1				
127	40.0 - 60.0% of mass 198	44.3				
197	Less than 1.0% of mass 198	0.0				
198	Base Peak, 100% relative abundance	100.0				
199	5.0 to 9.0% of mass 198	6.1				
275	10.0 - 30.0% of mass 198	20.3				
365	1.0 - 100.0% of mass 198	1.7				
441	0.0 - 100.0% of mass 443	8.7 (70.2)2				
442	40.0 - 100.0% of mass 198	55.2				
443	17.0 - 23.0% of mass 442	12.3 (22.4)3				

1-Value is % mass 69 3-Value is % mass 442 2-Value is % mass 443

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	_======================================	===========	========	========	========
01		SSTD042K0305	K3801	03/05/03	1119
02	WG1575-LCSD	WG1575-3	K3807	03/05/03	1601
03					
04					
05					
06					
07					
80					
09					
10					
11					
12 13					
$\frac{13}{14}$					
15					
16		····			
17					
18				[
19					
20					
	1 of 1				
-~9·					

FORM V SV

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/05/03 Time: 1119

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

	l	RRF42.000					1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
				====	======	=======	====
2-Picoline	1.1440000	1.0134000	1.0134000	0.01	-11.42		AVRG
Pyridine	1.3450000	1.1839000	1.1839000	0.01	-11.98		AVRG
N-Nitrosodimethylamine	0.9190000	0.7956100	0.7956100	0.01	-13.43		AVRG
Aniline	1.6650000	1.6101000	1.6101000	0.01	-3.30		AVRG
Phenol	1.3510000	1.3049000	1.3049000	0.01	-3.41	20.00	AVRG
Bis(2-Chloroethyl)ether	1.0390000	0.9776200	0.9776200	0.01	-5.91		AVRG
2-Chlorophenol	1.1210000	1.0885000	1.0885000	0.01	-2.90		AVRG
1,3-Dichlorobenzene	1.3170000	1.2527000	1.2527000	0.01	-4.88		AVRG
1,4-Dichlorobenzene	1.3320000	1.3262000	1.3262000	0.01	-0.44	20.00	AVRG
1,2-Dichlorobenzene	1.2190000	1.2516000	1.2516000	0.01	2.67		AVRG
Benzyl alcohol	0.6070000	0.6052200	0.6052200	0.01	-0.29		AVRG
Bis(2-Chloroisopropyl)ether_	2.6680000	3.6947000	3.6947000	0.01	38.48		AVRG
2-Methylphenol	0.8410000	1.0420000	1.0420000	0.01	23.'90		AVRG
Hexachloroethane	0.5570000	0.7255000	0.7255000	0.01	30.25	i	AVRG
N-Nitroso-di-n-propylamine	0.7690000	0.9770700	0.9770700	0.05	27.06		AVRG
3&4-Methylphenol	0.8850000	1.0955000	1.0955000	0.01	23.78		AVRG
Nitrobenzene	0.4120000	0.8261000	0.8261000	0.01	100.51		AVRG
Isophorone	0.6620000	0.7888700	0.7888700	0.01	19.16		AVRG
2-Nitrophenol	0.2070000	0.2193000	0.2193000	0.01	5.94	20.00	AVRG
2,4-Dimethyphenol	0.3430000	0.4134700	0.4134700	0.01	20.54		AVRG
Bis(2-Chloroethoxy)methane_	0.5370000	0.4477100	0.4477100	0.01	-16.63		AVRG
2,4-Dichlorophenol	0.2880000	0.2658700	0.2658700	0.01	-7.68	20.00	AVRG
1,2,4-Trichlorobenzene	0.3520000	0.3253100	0.3253100	0.01	-7.58		AVRG
Naphthalene	0.8870000	0.8964800	0.8964800	0.01	1.07		AVRG
4-Chloroaniline	0.3860000	0.3327200	0.3327200	0.01	-13.80		AVRG
Hexachlorobutadiene	0.2250000	0.2002600	0.2002600	0.01	-11.00	20.00	AVRG
4-Chloro-3-Methylphenol	0.2770000	0.2508200	0.2508200	0.01	-9.45	20.00	AVRG
2-Methylnaphthalene	0.7440000	0.6414000	0.6414000	0.01	-13.79		AVRG
Hexachlorocyclopentadiene	0.2920000	0.1295600	0.1295600	0.05	-55.63		AVRG
		İ			j		
		· ·					

page 1 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/05/03 Time: 1119

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000					
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
=======================================	=======	========	=======	=====	======		====
2,4,6-Trichlorophenol	0.4260000	0.4127400	0.4127400	0.01		1	AVRG
2,4,5-Trichlorophenol	0.4520000	0.4164900	, ,				AVRG
2-Chloronaphthalene			1.9724000		!		AVRG
2-Nitroaniline	0.4040000	0.3613300	0.3613300		-10.56		AVRG
Acenaphthylene		1.3450000			-5.55		AVRG
Dimethyl Phthalate	1.2200000	1.1333000	1.1333000	0.01	-7.11		AVRG
2,6-Dinitrotoluene		0.2696300			-13.02	1	AVRG
Acenaphthene	1.0130000	0.9918900	0.9918900	0.01	-2.08	20.00	AVRG
3-Nitroaniline	0.2820000	0.2747800	0.2747800	0.01	-2.56	[AVRG
2,4-Dinitrophenol	0.1570000	0.1332700	0.1332700	0.05	-15.12	ļ	AVRG
Dibenzofuran	1.3620000	1.2998000	1.2998000				AVRG
4-Nitrophenol		0.1261200					AVRG
2,4-Dinitrotoluene		0.3435100			,	6	AVRG
Fluorene	41.082000	42.000000	1.0231000	0.01	-2.18		LINR
Diethylphthalate	1.1640000	1.1715000	1.1715000	0.01	0.64		AVRG
4-Chlorophenyl-phenylether_	0.5450000	0.5272100	0.5272100	0.01	-3.26		AVRG
4-Nitroaniline	0.2700000	0.2309200	0.2309200	0.01	-14.47		AVRG
4,6-Dinitro-2-Methylphenol_	0.1720000	0.1554600	0.1554600	0.01	-9.62	į	AVRG
N-Nitrosodiphenylamine/DPA_	0.4510000	0.4161400	0.4161400	0.01	-7.73	20.00	AVRG
1,2-Diphenylhydrazine	0.9630000	0.9422300	0.9422300	0.01	-2.16		AVRG
4-Bromophenyl-phenylether	0.2480000	0.2261300	0.2261300	0.01	-8.82		AVRG
Hexachlorobenzene	0.3340000	0.3029700	0.3029700	0.01	-9.29		AVRG
Pentachlorophenol	0.2090000	0.2149000	0.2149000	0.01	2.82	20.00	AVRG
Phenanthrene	0.9270000	0.8753000	0.8753000	0.01	-5.58		AVRG
Anthracene	0.9430000	0.9196000	0.9196000	0.01	-2.48	ĺ	AVRG
Carbazole	0.8120000	0.7903300	0.7903300	0.01	-2.67	ŀ	AVRG
Di-n-butylphthalate	1.0830000	1.1783000	1.1783000	0.01	8.80	ĺ	AVRG
Fluoranthene	0.8770000	0.9684600	0.9684600	0.01	10.43	20.00	AVRG
Benzidine	0.2540000	0.2869700	0.2869700	0.01	12.98		AVRG
		1	·				li

page 2 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/05/03 Time: 1119

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000			ļ		<u> </u>
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
	=======	=======	=======	=====	======	=======	====
Pyrene	,	1.4101000		0.01	3.99		AVRG
Butylbenzylphthalate			0.4378700	0.01	-23.18		AVRG
Benzo (a) anthracene	0.9380000	0.8024700	0.8024700	0.01	-14.45	ĺ	AVRG
Chrysene	0.8880000	0.7786000	0.7786000	0.01	-12.32		AVRG
3,3'-Dichlorobenzidine	0.3720000	0.3211300	0.3211300	0.01	-13.68		AVRG
bis(2-Ethylhexyl)phthalate	0.7350000	0.7110000	0.7110000	0.01	-3.26		AVRG
Di-n-octylphthalate	1.9010000	1.7414000	1.7414000	0.01	-8.40	20.00	AVRG
Benzo(b) fluoranthene	1.3620000	1.2724000	1.2724000	0.01	-6.58		AVRG
Benzo(k) fluoranthene	1.5200000	1.2248000	1.2248000	0.01	-19.42	į	AVRG
Benzo(a)pyrene	1.2570000	1.1090000	1.1090000	0.01	-11.77	20.00	AVRG
Indeno(1,2,3-cd)pyrene	1.1090000	0.9808700	0.9808700	0.01	-11.55		AVRG
Dibenzo(a,h)anthracene	1.2780000	1.1390000	1.1390000	0.01	-10.88		AVRG
Benzo(g,h,i)perylene	1.1220000	0.9308900	0.9308900	0.01	-17.03		AVRG
N-Nitrosomethylethylamine	0.3490000	0.4024100	0.4024100	0.01	15.30		AVRG
Methyl Methanesulfonate	0.7190000	0.6206500	0.6206500	0.01	-13.68		AVRG
N-Nitrosodiethylamine	0.4490000	0.3922300	0.3922300	0.01	-12.64		AVRG
Ethyl Methanesulfonate	1.0660000	1.0065000	1.0065000	0.01	-5.58		AVRG
N-Nitrosopyrrolidine	0.3880000	0.4506200	0.4506200	0.01	16.14		AVRG
N-Nitrosomorpholine	0.7010000	0.9209000	0.9209000	0.01	31.37		AVRG
o-Toluidine	0.5060000	0.9572100	0.9572100	0.01	89.17		AVRG
Acetophenone	0.4870000	0.9542600	0.9542600	0.01	95.95		AVRG
N-Nitrosopiperidine	0.1630000	0.1811000	0.1811000	0.01	11.10		AVRG
O,O,O-Triethylphosphorothioa	0.1540000	0.1317400	0.1317400	0.01	-14.45		AVRG
2,6-Dichlorophenol	0.2920000	0.2449700	0.2449700	0.01	-16.11		AVRG
Hexachloropropene	0.2570000	0.2164100	0.2164100	0.01	-15.79		AVRG
A, A-Dimethylphenethylamine			0.7403800	0.01			AVRG
N-Nitroso-Di-N-Butylamine	0.1930000	0.1668500	0.1668500	0.01	-13.55	i	AVRG
Isosafrole		0.1762000		0.01	-19.91		AVRG
p-Phenylenediamine		3.95e-002		0.01	-71.38		AVRG
					30	i	
	·	·					

page 3 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/05/03 Time: 1119

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000					
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
j	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE
	=======	=======	=======	=====	======	=======	====
1,2,4,5-Tetrachlorobenzene	0.6800000	0.6415200	0.6415200	0.01	-5.66		AVRG
Safrole	0.2200000	0.1974200	0.1974200	0.01	-10.26		AVRG
1,4-Naphthoquinone	0.3830000	0.4026000	0.4026000		5.12		AVRG
1,3-Dinitrobenzene			0.1672900		-18.00]	AVRG
Pentachlorobenzene	0.5810000	0.5613800	0.5613800			•	AVRG
2-Naphthylamine	0.7390000	0.6688000	0.6688000	0.01		1	AVRG
1-Naphthylamine	0.6630000	0.5972800	0.5972800	0.01	-9.91		AVRG
2,3,4,6-Tetrachlorophenol			0.3124800			•	AVRG
0,0-diethyl-o-2-pyrazinylpho	0.1980000	0.1991800	0.1991800	0.01	0.60		AVRG
5-Nitro-O-Toluidine			0.3027900		!	ļ	2RDR
Sulfotepp			0.1589800		!	!	AVRG
1,3,5-Trinitrobenzene	0.1670000	0.1595500	0.1595500	0.01		1	AVRG
Phorate	0.5200000	0.5077100	0.5077100	0.01	!	!	AVRG
Diallate	5.4e-002	5.14e-002	5.14e-002	•	·	!	AVRG
Phenacetin	0.3590000	0.3406400	0.3406400	•	1	!	AVRG
Dimethoate	,		0.3105200	•	!	!	LINR
4-Aminobiphenyl	1	•	0.5957400	•	i .	!	AVRG
Pentachloronitrobenzene	0.1170000	0.1194700	0.1194700	!	•	I	AVRG
Pronamide	0.2950000	0.3135100	0.3135100	0.01	,	ļ	AVRG
Disulfoton	,		0.3710400		L	<u>I</u>	AVRG
Methyl Parathion	0.2220000	0.2580300	0.2580300	•	•		AVRG
4-Nitroquinoline-1-Oxide		•	1.67e-002	•	•	1	AVRG
Methapyrilene	0.2280000	0.2956700	0.2956700	0.01	1		AVRG
Isodrin		1	0.1240200	1	!	ļ	AVRG
Aramite			5.44e-002		i .	•	LINR
p-Dimethylaminoazobenzene	0.2120000	0.1389400	0.1389400	·	-34.46	!	AVRG
Chlorobenzilate	0.3650000	0.2394300	0.2394300	•	•		AVRG
Kepone		t	2.11e-002	<u> </u>	!	!	AVRG
Famphur	7.8e-002	8.17e-002	8.17e-002	0.01	4.74	1	AVRG
·	l	l	l		l	l	

page 4 of 5

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GCMS-K Calibration Date: 03/05/03 Time: 1119

Init. Calib. Times: 1254 1900

GC Column: DB5-MS ID: 0.25 (mm)

		RRF42.000						ĺ
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	İ
	AMOUNT	AMOUNT	RRF42.000	RRF	%DRIFT	%DRIFT	TYPE	ĺ
		=======	=======	==== =	======	=======	====	ĺ
3,3'-Dimethylbenzidine	0.3870000	0.3063300	0.3063300	0.01	-20.84		AVRG	ĺ
2-Acetylaminofluorene	0.3860000	0.2997900	0.2997900	0.01	-22.33		AVRG	ĺ
3-Methylcholanthrene	0.3430000	0.4358800	0.4358800	0.01	27.08		AVRG	ĺ
7,12-Dimethylbenz(A)Anthrace	0.4160000	0.3090000	0.3090000	0.01	-25.72		AVRG	ĺ
Hexachlorophene	0.0000000			0.01	0.00		AVRG	<-
======================================	=======	=======	=======	=====	======	=======	====	j
2-Fluorophenol	1.1020000	0.9976500	0.9976500	0.01	-9.47		AVRG	ĺ
Phenol-D6	1.2880000	1.2548000	1.2548000	0.01	-2.58		AVRG	
Nitrobenzene-D5	0.3940000	0.7491300	0.7491300	0.01	90.13		AVRG	Ì
2-Fluorobiphenyl	1.1930000	1.1006000	1.1006000	0.01	-7.74		AVRG	
2,4,6-Tribromophenol	0.2370000	0.2347800	0.2347800	0.01	-0.94		AVRG	
Terphenyl-D14	0.8740000	0.5088600	0.5088600	0.01	-41.78		AVRG	1

page 5 of 5

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): K3801

Date Analyzed: 03/05/03

Instrument ID: GCMS-K

Time Analyzed: 1119

			1			/	1
1		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	
İ		AREA #	RT #	AREA #	RT #	AREA #	RT #
	==========	========	======	=======	======	========	======
12 HOUR STD	i e	149498	6.14	266037	8.96	122791	12.95
UPPER LIMIT		298996	6.64	532074	9.46	245582	13.45
LOWER LIMIT		74749	5.64	133019	8.46	61396	12.45
2011DR 221121	.==== ===========	, 	, ===== === =			, 	
CLIENT SAMPLE	•	1		i i		I	i
ID	ID ID	1	i İ	' !		, 	, i
	:===== ================================	1 	, ========	: {======		' 	
1	WG1575-3	75759	!	235269	8.97	l 123737	12.97
01 WG1575-LCSD	:	1 75739	1 0.40	1 255205 [0.5,	1 123737	1
02		l	l	 		 -	
03		1	ļ			l	
04		ļ		!!		·	
05		!	! 				l
06			ļ	[[
07	l	l		!!			·!
08		l	i	ll			·!
09		l	l	ll			
10		1	J	ll			1
11		l	l	1		l	l
12		1	l	1			·1
13		l	l	I			l
14	<u> </u>	1	l	l			l
15		1	l	l		l	I
16	i		i	li		l	iI
17	1	1	 _	I		l	I
18		1	1			l	iI
19	<u> </u>		 		-	 	1
20	<u> </u>		·	ł		! 	 [
4º1		·	·	'		·	 '

IS1 (DCB) = 1,4-Dichlorobenzene-D4

IS2 (NPT) = Naphthalene-D8

IS3 (ANT) = Acenaphthene-D10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT

RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Lab File ID (Standard): K3801 Date Analyzed: 03/05/03

Instrument ID: GCMS-K Time Analyzed: 1119

IS4 (PHN) AREA # RT # RT # AREA AREA # RT # RT # AREA # RT # RT # AREA # RT # RT # AREA # RT # RT # RT # AREA # RT # RT #		L TOA (DITE)	1	L TOE (CD32)	1	Tac (DDIE)	, ,
12 HOUR STD					5	, , ,	
12 HOUR STD			! "	"	:	:	!
UPPER LIMIT LOWER LIMIT S9538 15.85 62053 21.99 50307 25.05	1	· !	1 .	!		į.	!!
LOWER LIMIT					!	•	!!
CLIENT SAMPLE LAB SAMPLE		1	•			!	,,
CLIENT SAMPLE LAB SAMPLE ID ID ID ID ID ID ID ID ID ID ID ID ID	LOWER LIMIT	89538	15.85	62053	21.99	50307	25.05
ID	+=====================================						=========
	CLIENT SAMPLE LAB SAMPL	E		1		i	
01 WG1575-LCSD WG1575-3 184756 16.38 93464 22.52 50869 25.57 02 03 04 05 06 07 08 10 11 12 13 14 15 16 18 19	ID ID			1		1	
02 </td <td></td> <td> </td> <td>******</td> <td> ======================================</td> <td></td> <td>=========</td> <td></td>			******	======================================		=========	
03	01 WG1575-LCSD WG1575-3	184756	16.38	93464	22.52	50869	25.57 .
03	02			l!		l	l
04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19				l <u></u> .l		l	lI
06 07 08 09 10 11 12 13 14 15 16 17 18 19	04			ll		l	lI
06 07 08 09 10 11 12 13 14 15 16 17 18 19	05			l <u></u> l			il
07 08 09 10 11 12 13 14 15 16 17 18 19	06					l	!I
08 09 10 11 12 13 14 15 16 17 18 19	07					l	·
09 10 11 12 13 14 15 16 17 18 19		1					
10 </td <td>09</td> <td></td> <td></td> <td>!</td> <td></td> <td>1</td> <td></td>	09			!		1	
11 12 13 14 15 16 17 18 19		1					
12 13 14 15 16 17 18 19				ll			
13 14 15 16 17 18 19	12			l		<u> </u>	
14 15 16 17 18 19	13			i			
15 16 17 18 19	14			i			I
17 18 19							I
17 18 19	16						
18							
19							
	· · · · · · · · · · · · · · · · · · ·						
	20					·	·

IS4 (PHN) = Phenanthrene-D10
IS5 (CRY) = Chrysene-D12

IS6 (PRY) = Perylene-D12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: XD913

DFTPP Injection Date: 02/28/03

Instrument ID: GCMS-X

DFTPP Injection Time: 1214

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
====	======================================	=======================================
51	30.0 - 60.0% of mass 198	50.4
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Less than 100.0% of mass 198	65.3
70	Less than 2.0% of mass 69	0.0 (0.0)1
127	40.0 - 60.0% of mass 198	40.4
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.0
275	10.0 - 30.0% of mass 198	25.2
365	1.0 - 100.0% of mass 198	3.0
441	0.0 - 100.0% of mass 443	7.6 (66.5)2
442	40.0 - 100.0% of mass 198	56.1
443	17.0 - 23.0% of mass 442	11.4 (20.4)3
i		

1-Value is % mass 69

2-Value is % mass 443

3-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME	
	SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED	
	=======================================	=========		=======	_=======	
01		SSTD3.00X0228	X2236	02/28/03	1308	ĺ
02		SSTD0.125X0228	X2237	02/28/03	1350	l
03		SSTD0.625X0228	X2238	02/28/03	1432	
04		SSTD2.00X0228	X2239	02/28/03	1513	į
05		SSTD2.50X0228	X2240	02/28/03	1555	ĺ
06	4	SSTD1.25X0228	X2241	02/28/03	1636	į
07	WG1567-BLANK	WG1567-1	X2242	02/28/03	1717	ı
08	WG1567-LCS	WG1567-2	X2243	02/28/03	1759	i
09	WG1567-LCSD	WG1567-3	X2244	02/28/03	1840	į
10	FC-MW-06-0103	WT0233-1	X2245	02/28/03	1922	į
11	FC-MW-05-0103	WT0233-3	X2247	02/28/03	2045	į
12	FC-MW-05-0103-RA	WT0233-3	X2250	02/28/03	2249	ĺ
13						į
14						į
15				l <u></u>		į
16						i
17						ĺ
18						ĺ
19						į
20						ı

page 1 of 1

FORM V SV

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No : CTO233-4

Instrument ID: GCMS-X

Calibration Date(s): 02/13/03 02/28/03

Column: DB5-MS ID: 0.25 (mm) Calibration Time(s): 1234 1636

LAB FILE ID:

RF0.125: X2237 RF0.625: X2238 RF1.25: X2241

RF2: X2239 RF2.5: X2240 RF3: X2236

								COEFF.	%RSD	MAX &RS	 end
	i	1	! !	700	, nen 5 1	202 1	CT ID LID	•	•	OR R^2	•
COMPOUND	•	RF0.625 1		RF2	RF2.5	•	CURVE	•	•	•	•
	= ======										
Naphthalene	_ 0.904	0.745	0.818	0.877	0.862	•		0.83192	7.236	30.000	,
2-Methylnaphthalene	_ 0.387	0.382	0.417	0.485	0.512			0.44579	12.887	30.000	
Acenaphthylene	_ 1.255	1.639	1.795	1.680	1.772	1.960	AVRG	1.68362	14.106	30.000)
Acenaphthene	_ 1.226	1.027	1.222	1.170	1.125	1.129	AVRG	1.14975	6.473	30.000) [
Fluorene	_ 1.083	1.149	1.128	1.153	1.139	1.378	AVRG	1.17148	8.886	30.000)
Phenanthrene	_ 0.891	0.699	0.932	0.895	0.893	1.000	AVRG	0.88497	11.332	30.000)
Anthracene	_ 0.998	0.787	1.044	1.149	1.109	1.115	AVRG	1.03375	12.832	30.000)
Fluoranthene	_ 1.117	0.803	0.986	1.047	1.023	1.084	AVRG	1.00996	11.023	30.000)
Pyrene	_ 1.509	1.252	1.378	1.366	1.294	0.976	AVRG	1.29598	13.868	30.000)
Benzo(a)anthracene	_ 0.624	0.360	0.399	0.536	0.650	0.409	AVRG	0.4963€	25.049	30.000)
[Chrysene	_ 1.301	1.379	1.688	1.431	1.373	1.386	AVRG	1.42629	9.464	30.000)
Benzo(b) fluoranthene	_ 0.947	0.636	0.847	0.999	1.214	1.121	AVRG	0.96075	21.308	30.000) [
Benzo(k) fluoranthene	2.832	2.523	3.146	2.430	2.503	2.541	AVRG	2.66258	10.299	30.000)
Benzo(a)pyrene	1.434	1.383	1.733	1.394	1.549	1.516	AVRG	1.50140	8.741	30.000)
Indeno(1,2,3-cd)pyrene	_ 0.729	0.587	0.677	0.595	0.668	0.946	AVRG	0.70040	18.827	30.000)
Dibenzo (a, h) anthracene	1.129	0.963	1.290	0.833	0.876	1.128	AVRG	1.03661	16.905	30.000)
Benzo(g,h,i)perylene	_ 1.639	1.471	1.978	1.430	1.592	1.637	AVRG	1.62452	11.920	30.000)
1-Methylnaphthalene	0.859	0.593	0.598	0.636	0.607	0.855	AVRG	0.69136	18.710	30.000)
						======		=======		- ======	==
Nitrobenzene-D5	_ 0.120	0.094	0.094	0.183	0.196	0.295	AVRG	0.16347	47.650	30.000)
2-Fluorobiphenyl	_ 1.213	1.206	1.538	1.637	1.593	1.308	AVRG	1.41577	13.833	30.000)
Terphenyl-D14	0.772	0.739	0.843	0.886	0.836	0.786	AVRG	0.81052	6.670	30.000)
t = =	 				ı	ı		ı	1	1	1

| Average %RSD test result. | Calculate Average %RSD: 14.84537983 | Maximum Average %RSD: 15.00000000 Note: Passes Average %RSD Test.

FORM VI SV

FORM 7B SEMIVOLATILE CALIBRATION VERIFICATION SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GCMS-X Calibration Date: 02/28/03 Time: 1636

Init. Calib. Times: 1234 1636

GC Column: DB5-MS ID: 0.25 (mm)

	1	RRF1.2500				
COMPOUND	RRF OR	OR	MIN	%D OR	MAX %D OR	CURV
	AMOUNT	AMOUNT	RRF	%DRIFT	%DRIFT	TYPE
	_=======	=======	=====	======	=======	====
Naphthalene	0.8320000	0.8178700	0.01	-1.70		AVRG
2-Methylnaphthalene	0.4460000	0.4170300	0.01	-6.50		AVRG
Acenaphthylene	1.6840000	1.7948000	0.01	6.58		AVRG
Acenaphthene	1.1500000	1.2216000	0.01	6.23	20.00	AVRG
Fluorene	1.1720000	1.1283000	0.01	-3.73		AVRG
Phenanthrene	0.8850000	0.9317400	0.01	5.28	1	AVRG
Anthracene	1.0340000	1.0440000	0.01	0.97		AVRG
Fluoranthene	1.0100000	0.9858400	0.01	-2.39	20.00	AVRG
Pyrene	1.2960000	1.3781000	0.01	6.33	ļ	AVRG
Benzo(a)anthracene	0.4960000	0.3989600	0.01	-19.56		AVRG
Chrysene	1.4260000	1.6884000	0.01	18.40		AVRG
Benzo(b)fluoranthene	0.9610000	0.8473700	0.01	-11.82		AVRG
Benzo(k)fluoranthene	2.6620000	3.1458000	0.01	18.17		AVRG
Benzo(a)pyrene	1.5020000	1.7326000	0.01	15.35	20.00	AVRG
Indeno(1,2,3-cd)pyrene	0.7000000	0.6766500	0.01	-3.34		AVRG
Dibenzo(a,h)anthracene	1.0360000	1.2898000	0.01	24.50		AVRG
Benzo(g,h,i)perylene	1.6240000	1.9778000	0.01	21.79		AVRG
1-Methylnaphthalene	0.6910000	0.5976500	0.01	-13.51		AVRG
=======================================	=======	=======	====	======		====
Nitrobenzene-D5	0.1640000	9.35e-002	0.01	-42.99	İ	AVRG
2-Fluorobiphenyl	1.4160000	1.5380000	0.01	8.62		AVRG
Terphenyl-D14	0.8100000	0.8434200	0.01	4.12		AVRG
						li

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/04/83 Received Date: 02/04/63

Extraction Date: 02/04/03 Analysis Date: 02/28/03 Report Date: 03/05/2003

Matrix: WATER % Solids: NA

Lab ID: WG1567-1

Client ID: WG1567-Blank

SDG: CTO233-4 Extracted by: RH

Extraction Method: SW846 3510

Analyst: JJC

Analysis Method: SW846 M8270C

Lab Prep Batch: WG1567

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
91-20-3	Naphthalene	U	0.20	1.0	0.20	0.20	0.050
91-57-6	2-Methylnaphthalene	. U	0.20	1.0	0.20	0.20	0.080
208-96-8	Acenaphthylene	Ū	0.20	1.0	0.20	0.20	0.050
83-32-9	Acenaphthene	Ū .	0.20	1.0	0.20	0.20	0.080
86-73-7	Fluorene	υ	0.20	1.0	0.20	0.20	0.060
85-01-8	Phenanthrene	υ	0.20	1.0	0.20	0.20	0.080
120-12-7	Anthracene	υ	0.20	1.0	0.20	0.20	0.080
206-44-0	Fluoranthene	ប	0.20	1.0	0.20	0.20	0.11
129-00-0	Pyrene	U	0.20	1.0	0.20	0.20	0.090
56-55-3	Benzo(a) anthracene	U	0.20	1.0	0.20	0.20	0.12
218-01-9	Chrysene	U	0.20	1.0	0.20	0.20	0.070
205-99-2	Benzo(b)fluoranthene	U	0.20	1.0	0.20	0.20	0.090
207-08-9	Benzo(k)fluoranthene	U	0.20	1.0	0.20	0.20	0.080
50-32-8	Benzo(a)pyrene	υ	0.20	1.0	0.20	0.20	0.090
193-39-5	Indeno(1,2,3-cd)pyrene	U	0.20	1.0	0.20	0.20	0.10
53-70-3	Dibenzo(a,h)anthracene	U	0.20	1.0	0.20	0.20	0.15
191-24-2	Benzo(g,h,i)perylene	ប	0.20	1.0	0.20	0.20	0.080
90-12-0	1-Methylnaphthalene	U	0.20	1.0	0.20	0.20	0.080
4165-60-0	Nitrobenzene-D5		102%				
321-60-8	2-Fluorobiphenyl		67%				
1718-51-0	Terphenyl-D14		98%				

Page 01 of 01 X2242.D

Data File: \\Target_server\GG\chem\gcms-x.i\x022803.b\X2242.D Page 5

Report Date: 05-Mar-2003 18:50

Katahdin Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client Name:

Lab Smp Id: WG1567-1

Operator : JJC Sample Location:

Sample Matrix: WATER

Analysis Type: SV

Inj Date: 28-FEB-2003 17:17

Client SDG: 021497

Client Smp ID: WG1567-Blank

Sample Date: 04-FEB-2003

Sample Point:

Date Received:04-FEB-2003 12:00

Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ug/L

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		======	========	=====

FORM 2 WATER SEMIVOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

		T. D.D.	S1	s2	S3	S4	S5	S6	S7	S8	I mom t
	CLIENT	LAB			!) 54 #	55 #	. So	5 <i>1</i> #		TOT
	SAMPLE ID	SAMPLE ID	NBZ#	i	TPH#	:		i :			: :
		=======================================	====	====	====	====	====	====	====	====	===
01	· · · = · · · ·	WG1567-1	102	67	98						0
02	WG1567-LCS	WG1567-2	106	74	81						0
03	WG1567-LCSD	WG1567-3	125	72	69	l					0
04		WT0233-1	79	63	65		ļ i				0
	FC-MW-05-0103	WT0233-3	121	66	62						0
06		WT0233-3	97	64	68						0
07	FC-MW-20R-0103	WT0233-2	D	D	D						0
80					!						
09					!						
10					!						
11					ļ						
12											!
13			ļ								
14			l								
15			<u> </u>		<u> </u>						
16											
17					ļ						
18											
19			l								
20			l		ļ						
21			1		 						
22			l								
23					 _						
24					l						
25											
26					l						
27			l			ll					1
28					l						

QC LIMITS

S1	(NBZ)	=	Nitrobenzene-D5	(30-150)
S2	(FBP)	=	2-Fluorobiphenyl	(30-150)
53	(TPH)	=	Terphenvl-D14	(30-150)

[#] Column to be used to flag recovery values

page 1 of 1

FORM II SV-1

^{*} Values outside of contract required QC limits

D Surrogate diluted out

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): X2241 Date Analyzed: 02/28/03

Instrument ID: GCMS-X

Time Analyzed: 1636

		IS1(DCB)		IS2(NPT)	ŀ	IS3 (ANT)	1
		AREA #	RT #	AREA #	RT #	AREA #	RT #
=======================================	========	=======================================	======	========	======	========	======
12 HOUR STD		3839	5.84	19599	8.64	6252	12.69
UPPER LIMIT		7678	6.34	39198	9.14	12504	13.19
LOWER LIMIT		1920	5.34	9800	8.14	3126	12.19
				====================================		====================================	========
CLIENT SAMPLE	LAB SAMPLE	ĺ		i I			
ID	ID						
				 ===================================		==============	========
01 WG1567-BLANK	WG1567-1	4250	5.82	19584	8.64	8091	12.66
02 WG1567-LCS	WG1567-2	5468	5.81	20774	8.64	9543	12.66
03 WG1567-LCSD	WG1567-3		5.81	19567	8.64	8195	12.66
04 FC-MW-06-0103	WT0233-1	4388	5.82	20643	8.64	8121	12.66
05 FC-MW-05-0103	WT0233-3	5946	5.81	22451	8.64	9256	12.66
06 FC-MW-05-0103-RA	WT0233-3	6134	5.82	28533	8.64	11869	12.66
07	İ	.		II		li	
08	1			l			
09	i			1			
10				l		l	
11				i			
12	1			l			
13	1	1		l		l1	
14				l		l <u></u> [1
15		I				ll	
16	l			II		lt	
17	<u> </u>	 		I!		l <u> </u>	
18				lI		l1	
19							
20	 					1	

IS1 (DCB) = 1,4-Dichlorobenzene-D4

IS2 (NPT) = Naphthalene-D8

IS3 (ANT) = Acenaphthene-D10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT

RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): X2241 Date Analyzed: 02/28/03

Instrument ID: GCMS-X

Time Analyzed: 1636

1		IS4 (PHN)	<u> </u>	IS5 (CRY)	<u> </u>	IS6 (PRY)	<u> </u>
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		AKLA #					======
12 HOUR STD		7169	16.08	5443	22.24	2148	25.25
UPPER LIMIT		14338	16.58	10886	22.74	4296	25.75
• • · · ·		3585	15.58	2722	21.74	1074	24.75
LOWER LIMIT	1	l			,	10/4	
	·	= = = = = 		======== 		, ,	
CLIENT SAMPLE	LAB SAMPLE	[[:
ID] ID					! 1	i
	•			-			=======
01 WG1567-BLANK	WG1567-1	9228	16.08	5131	22.24	2214	25.25
	WG1567-2	13832	16.08	11425*		5717*	•
03 WG1567-LCSD	WG1567-3	11477		8539	22.20	3972	25.25
	WT0233-1	9980	16.08	8008	22.24	3394	25.25
	WT0233-3	12756		9928	22.20	5208*	25.25
06 FC-MW-05-0103-RA	WT0233-3	16118*	16.08	13404*	22.20	7234*	25.26
07	l	ll		l		<u> </u>	
08]		ll]	
09	l	ll		l			!
10	l	ll]			
11		ll				ļ	
12		ll				ll	
13		tI		ll			
14	l	li				l	
15	l	ll					
16	l	i		[lI	
17	İ	!l		ll			l
18		ll		l 		ll	
19		1		l		}I	
20	.l <u></u>	اــــــا				ll	

IS4 (PHN) = Phenanthrene-D10

IS5 (CRY) = Chrysene-D12

IS6 (PRY) = Perylene-D12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

FORM 5 SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID: XD918

DFTPP Injection Date: 03/05/03

Instrument ID: GCMS-X

DFTPP Injection Time: 0911

	TON ADDITIONAL OF THEFT	% RELATIVE ABUNDANCE
m/e	ION ABUNDANCE CRITERIA	ADONDANCE
51	30.0 - 60.0% of mass 198	59.2
68	Less than 2.0% of mass 69	$0.0 \overline{(0.0)1}$
69	Less than 100.0% of mass 198	70.0
70	Less than 2.0% of mass 69	0.0 (0.0)1
127	40.0 - 60.0% of mass 198	47.7
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.4
275	10.0 - 30.0% of mass 198	24.3
365	1.0 - 100.0% of mass 198	3.2
441	0.0 - 100.0% of mass 443	10.7 (87.2)2
442	40.0 - 100.0% of mass 198	54.6
443	17.0 - 23.0% of mass 442	12.2 (22.4)3
İ		l

1-Value is % mass 69

2-Value is % mass 443

3-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

ļ	CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	=======================================	=======================================	========	========	=========
01		SSTD1.25X0305	X2285	03/05/03	0933
02	FC-MW-20R-0103	WT0233-2	X2293	03/05/03	1516
03					
04					
05			l		
06			<u> </u>		
07					
80					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

page 1 of 1

FORM V SV

FORM 7B SEMIVOLATILE CALIBRATION VERIFICATION SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

SDG No.: CTO233-4 Project: NAF KEY WEST CTO233

Instrument ID: GCMS-X Calibration Date: 03/05/03 Time: 0933

Lab File ID: X2285 Init. Calib. Date(s): 02/13/03 02/28/03

Init. Calib. Times: 1234 1636

GC Column: DB5-MS ID: 0.25 (mm)

	l	RRF1.2500	1			
COMPOUND	RRF OR	OR	MIN	%D OR	MAX %D OR	CURV
	AMOUNT	AMOUNT	RRF	%DRIFT	%DRIFT	TYPE
=======================================	=======	=======	=====	======	=======	====
Naphthalene	0.8320000	1.0065000	0.01	20.97		AVRG
2-Methylnaphthalene	0.4460000	0.4807200	0.01	!	!	AVRG
Acenaphthylene	1.6840000	1.5794000	0.01	-6.21		AVRG
Acenaphthene	1.1500000	0.9955300	0.01	-13.43	20.00	AVRG
Fluorene	1.1720000	1.0745000	0.01	-8.32		AVRG
Phenanthrene	0.8850000	0.8766200	0.01	-0.95		AVRG
Anthracene	1.0340000	0.9723600	0.01	-5.96		AVRG
Fluoranthene	1.0100000	0.9287200	0.01	-8.05	20.00	AVRG
Pyrene	1.2960000	1.3646000	0.01	5.29		AVRG
Benzo(a) anthracene	0.4960000	0.4892300	0.01	-1.36		AVRG
Chrysene	1.4260000	1.4409000		!		AVRG
Benzo(b)fluoranthene	0.9610000	1.2621000	0.01	•		AVRG
Benzo(k)fluoranthene	2.6620000	1.9436000	0.01		!	AVRG
Benzo(a)pyrene	1.5020000	1.2549000	0.01		!	!
Indeno(1,2,3-cd)pyrene	0.7000000	1.0667000	0.01	52.39		AVRG
Dibenzo(a,h)anthracene	1.0360000	1.1222000	0.01	8.32		AVRG
Benzo(g,h,i)perylene	1.6240000	1.3758000	0.01	-15.28		AVRG
1-Methylnaphthalene	0.6910000	1.0669000	0.01	54.40		AVRG
	=======	=======	=====	======	=======	====
Nitrobenzene-D5	0.1640000	0.2648600	0.01	61.50		AVRG
2-Fluorobiphenyl	1.4160000	1.4351000	0.01	1.35		AVRG
Terphenyl-D14	0.8100000	0.8362200	0.01	3.24		AVRG
						l

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CT0233-4

Lab File ID (Standard): X2285 Date Analyzed: 03/05/03

Instrument ID: GCMS-X

Time Analyzed: 0933

		l /		TGO (370T)		T (12 / 2 2 7 2 7 7 7)	 ,
	•	IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	
		AREA #	!		:	AREA #	** !
=======================================		1			!		
12 HOUR STD		4910	5.71		1	9249	12.55
UPPER LIMIT		9820	6.21	34796	9.05	18498	13.05
LOWER LIMIT		2455	5.21	8699	8.05	4625	12.05
	-		========	=======			=======
CLIENT SAMPLE	LAB SAMPLE						:
i ID	i ID	i I		l ł		1	
		=========	========	======	=======		
01 FC-MW-20R-0103	WT0233-2	5938	5.71	19479 }	8.55	10214	12.58
)2	İ	ll		ll		ll	
03	1	1				l1	
04		11		l		ll	
05		1		l		ll	
06	-		i	ll			
07		[l			
08				l		l	
09	- · · · · · · · · · · · · · · · · · · ·	II		ll		ll	
10		J		ll			
11		II		ll			
12				ll		ll	
13				ll		ll	
14				ll		ll	
15				ll		ll	
16				ll		ll	
17				l		II	
18		i		l			
19							
20						ll	

IS1 (DCB) = 1,4-Dichlorobenzene-D4

IS2 (NPT) = Naphthalene-D8

IS3 (ANT) = Acenaphthene-D10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT

RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

FORM 8 SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Lab File ID (Standard): X2285

Date Analyzed: 03/05/03

Instrument ID: GCMS-X

Time Analyzed: 0933

		TGA (DIDZ)	1	TCE (CDV)	<u> </u>	IS6 (PRY)	
		IS4 (PHN)		IS5 (CRY)			
1		AREA #	RT #				
	========	========	======		!	========	!
12 HOUR STD		12112	15.94	9534	22.05	5262	25.08
UPPER LIMIT		24224	16.44	19068	22.55	10524	25.58
LOWER LIMIT		6056	15.44	4767	21.55	2631	24.58
		======================================	===== = ==				
CLIENT SAMPLE	LAB SAMPLE			ĺ		l	
i to	i ID	i I		i			
	 			========			
01 FC-MW-20R-0103	WT0233-2	13639	15.94	6670 l	22.09	3409	25.12
02	1			i i		I i	
031	1		1				
	_	' 		··			
04 05	- I	<u></u> -		'			
061	-	! 		· ·		' ' 	
071		1 <u></u>		··		''	
· · · · · · · · · · · · · · · · · · ·	-!		! 			· · · · · · · · · · · · · · · · · · ·	
08	-l	l	! <u>-</u>	 		', '	
09 <u> </u>	_	! 				'	
10 11	_		! !	' '		''	
12		l	·	!!		!!	
				!		 	
13	_		ļ	}]			
14	_	l	<u> </u>	!1		!!	
15	-!	}	<u> </u>	<u> </u>][
16		<u> </u>	ļ	l		ll	
17	-!		ļ	!!		[]	
18	_1		!	!		! !	
19	_1	l	l			<u> </u>	
20	_1	l	l	l			

IS4 (PHN) = Phenanthrene-D10

IS5 (CRY) = Chrysene-D12

IS6 (PRY) = Perylene-D12

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag internal standard area values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

FORM 8 SEMIVOLATILE ANALYTICAL SEQUENCE

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

GC Column: RTX-CLPII ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/17/03

Instrument ID: GC08

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO	GATE RT FROM 1	INITIAL CAL	IBRATION	1	
	DCB: 20.72	TCX:	5.05		Ì	
	CLIENT	LAB	DATE	TIME	DCB	TCX
	SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
			=======	========	======	======
01	CV	CHLORDANE 0.	02/17/03	1258	 	
02	EVAL	EVAL	02/17/03	1352	 	ll
03	ICAL	INDAB 0.05PP	02/17/03	1419	20.72	5.05
04	ICAL	INDAB 0.005P	02/17/03	1446	20.72	5.05
05	ICAL	INDAB 0.01PP	02/17/03	1513	20.72	5.05
06	ICAL	INDAB 0.025P	02/17/03	1540	20.72	5.05
07	ICAL	INDAB 0.1PPM	02/17/03	1607	20.72	5.05
08	ICAL	INDAB 0.25PP	02/17/03	1634	20.72	5.05
09	IND SOURCE	INDAB 0.05PP	02/17/03	1701		l
10	ICAL	TOXAPHENE 1.	02/17/03	1728		
11	WG1590-BLANK	WG1590-1	02/17/03	2037	20.72	5.05
12	WG1590-LCS	WG1590-2	02/17/03	2105	20.72	5.05
13	CV	INDAB 0.05PP	02/18/03	0632	20.72	5.05
14	EVAL	EVAL	02/19/03	1144		
15	ICAL	INDAB 0.05PP	02/19/03	1210	20.72	5.05
16	ICAL	INDAB 0.005P	02/19/03	1237	20.73	5.05
17	ICAL	INDAB 0.01PP	02/19/03	1304	20.73	5.05
18	ICAL	INDAB 0.025P	02/19/03	1331	20.73	5.05
19	ICAL	INDAB 0.1PPM	02/19/03	1358	20.72	5.05
20	ICAL	INDAB 0.25PP	02/19/03	1425	20.72	5.05
					i	

QC LIMITS

DCB = Decachlorobiphenyl (+/- 0.07 MINUTES)
TCX = Tetrachloro-m-Xylene (+/- 0.07 MINUTES)

Column used to flag retention time values with an asterisk.

* Values outside of QC limits.

page 1 of 2

FORM 8 SEMIVOLATILE ANALYTICAL SEQUENCE

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

GC Column: RTX-CLPI ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/17/03

Instrument ID: GC08

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO		INITIAL CAL	IBRATION		
	DCB: 16.72	TCX:	4.17	•		
	CLIENT	LAB	DATE	TIME	DCB	TCX
	SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	========		=======	=======	=======	======
01	CV	CHLORDANE 0.	02/17/03	1258		l
02	EVAL	EVAL	02/17/03	1352		
03	ICAL	INDAB 0.05PP	02/17/03	1419	16.72	4.17
04	ICAL	INDAB 0.005P	02/17/03	1446	16.72	4.17
05	ICAL	INDAB 0.01PP	02/17/03	1513	16.72	4.17
06	ICAL	INDAB 0.025P		1540	16.72	4.17
07	ICAL	INDAB 0.1PPM		1607	16.72	4.17
80	ICAL	INDAB 0.25PP	02/17/03	1634	16.72	4.17
09	IND SOURCE	INDAB 0.05PP	02/17/03	1701	<u> </u>	
10	ICAL	TOXAPHENE 1.	02/17/03	1728		
11	WG1590-BLANK	WG1590-1	02/17/03	2037	16.72	4.17
12	WG1590-LCS	WG1590-2	02/17/03	2105	16.72	4.17
13	CV	INDAB 0.05PP	02/18/03	0632	16.72	4.17
14	EVAL	EVAL	02/19/03	1144		
15	ICAL	INDAB 0.05PP	02/19/03	1210	16.71	4.17
16	ICAL	INDAB 0.005P	02/19/03	1237	16.72	4.17
17	ICAL	INDAB 0.01PP	02/19/03	1304	16.72	4.17
18	ICAL	INDAB 0.025P	02/19/03	1331	16.72	4.17
19	ICAL	INDAB 0.1PPM	02/19/03	1358	16.71	4.17
20	ICAL	INDAB 0.25PP	02/19/03	1425	16.71	4.17

QC LIMITS

DCB = Decachlorobiphenyl (+/- 0.07 MINUTES)
TCX = Tetrachloro-m-Xylene (+/- 0.07 MINUTES)

page 1 of 2

[#] Column used to flag retention time values with an asterisk.

^{*} Values outside of QC limits.

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC08

Calibration Date(s): 02/13/03 02/17/03

Column: RTX-CLPI ID: 0.53 (mm) Calibration Time(s): 1439 2010

LAB FILE ID: RF0.005: 8TB1157 RF0.01: 8TB1158 RF0.025: 8TB1159

RF0.05: 8TB1156 RF0.1: 8TB1160 RF0.25: 8TB1161

	1								OEFFICEN		1 ARSD	12222 2	_
COMPOUND	RF0.005	 RFO.01	 RF0.025	: RFO.05	l RFO.1	1 1880 25	I CTIRVE	•	A1	rs I A2	1 1.000	MAX TRS	•
**********************					•	•		•	•			OR R^2	
alpha-BHC	9803			131720					4e-007	2e-014	0.99994	•	•
gamma BHC	10520		•	131610		•	•		4e-007	4e-014	10.99993	•	•
Heptachlor	13940	•				='	-	-5e-004		9e-014	0.99995	,	•
beta-BHC	6430		•			•		-4e-004	•	:	10.99994	•	
Aldrin	12556		•	141330				-	3e-007	7e-014	10.99996		•
delta-BHC	4495					392720			7e-007	•	0.99945	•	•
Heptachlor Epoxide	13397		•			•	•	-7e-004	•	11e-013	0.99989	•	•
Endosulfan I	11398			112600				-	4e-007	1e-013	10.99999	•	•
4,4'-DDE	10341			118430					4e-007		0.99992	•	•
Dieldrin	10239	22425						-1e-004	-	8e-014	10.99990	•	•
Endrin	9249	19713				463530			5e-007	1e-013	0.99997		•
4,4'-DDD	5436	11682	29978			342550			7e-007	•	0.99981	•	•
Endosulfan II	8412	17433	41845			394910			6e-007	1e-013	0.99998	•	•
4,4'-DDT	5879	12542	31271	69063]		344920			7e-007		0.99992	•	•
Endrin Aldehyde	4994	9789	22708			209840		_	le-006	3e-013	0.99988	•	•
Endosulfan sulfate	1927	4149	9976	23756		140610			•		0.99967		•
Methoxychlor	3846	8078	18264	37176				-7e-004	•	l1e-012	0.99986	•	•
Toxaphene	2963	8073	14366	26415		112110			3e-005		0.99990	•	•
(2)	2883	8028	14857	29244	71448	141740	2ORDR		3e-005	3e-011	0.99985	•	•
(3)	2831	7959	15088	30243	74886	150190	2ORDR	3e-002	3.e-005	3e-011	0.99976	•	•
(4)	3910	10375	19833	39534	98564	198210	20RDR	4e-002	2e-005	2e-011	0.99971	•	•
(5)	3656	10013	19824	41056	105360	216300	20RDR	5e-002	2e-005	9.e-012	0.99969	•	•
(6)	2758	7808	15330	32085	82451	173090	20RDR	6e-002	3e-005	le-011	0.99957	•	•
(7)	4199	11994	24294	49866		257260			2e-005	8e-012	0.99969	•	•
(8)	1844	5664	11855	26219	72501	155330	20RDR			8e-012	0.99945	•	•
(9)	2045	5742	11745	25602	69300	150230	20RDR			1e-011	0.99933		•
[(10)	2820	7971	15059	30250	75396	152710	20RDR	4e-002	3e-005	-	0.99969	•	•
alpha-Chlordane	12739	26579	63213	118320	224770	517030	20RDR	-7e-004			0.99995	•	í
gamma-Chlordane	13574	27812	66072	129470	243430	573760	20RDR	-6e-004	4e-007	8e-014	, 0.99994	0.99000	1
Endrin Ketone	3697	7849	18955	42311	84464	214000	20RDR	8e-004	1e-006		0.99991	•	1
Chlordane	5269	10585	27314	52197	102010	249380	20RDR	-4e-003	le-005		10.99996	•	i
(2)	9550	19466	51395					-3e-003			0.99994	'	i
(3)	8600	16621	40813	73447	126920	286210	20RDR	-2e-002	7e-006		0.99941	•	i
(4)	15207	28985	75770			-	•	-4e-003			0.99995		
[5]	20114	39315						-le-002			0.99970		
	======	======											
Tetrachloro-m-Xylene	9669	19083	47921]					-5e-004			0.99990	•	•
Decachlorobiphenyl	10655	21062	43921					-2e-003		•	0.99957		,
l			i	i	1	i	i	i		 I			!
					DM C	VIT C	T 7				·		. •

FORM VI SV

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC08

Calibration Date(s): 02/13/03 02/17/03

Column: RTX-CLPII ID: 0.53 (mm) Calibration Time(s): 1439 2010

LAB FILE ID: RF0.005: 8TB2157 RF0.01: 8TB2158 RF0.025: 8TB2159

RF0.05: 8TB2156 RF0.1: BTB2160 RF0.25: 8TB2161

<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>			- <u>-</u>						
COMPOUND	I DEC OCC	l Inno on i	l Inno oos	Inno or I		! !	!	•	COEFFICEN		*RSD	MAX %RSD
•				RF0.05					A1	A2	OR R^2	OR R^2
alpha-BHC	9368			117260								•
gamma BHC	9896			115830				•	4.e-007			0.99000
Heptachlor	10240									7e-014		0.99000
beta-BHC	6376							-2e-004 -3e-004	-	1e-013	•	0.99000
Aldrin	9400	•				462160		•	•	4e-013		0.99000
delta-BHC	4491			. ,		355180	•	•	5.e-007			0.99000
Heptachlor Epoxide	8359					364700	•	•	8e-007	-2e-013		0.99000
Endosulfan I	7052						•	-1e-005	6e-007	3e-013		0.99000
4,4'-DDE	7856							-2e-004	:	3e-013		0.99000
Dieldrin	6145					312280	•	•	6e-007	2e-013	*	0.99000
Endrin	5476			'		267850		•	8e-007	9e-014		[0.99000
4,4!-DDD	4027		21270			230530			9e-007	2e-013		0.99000
Endosulfan II	56991		27586	•				•	1e-006 9.e-007			0.99000
4.4'-DDT	4509	•							•	2e-013	•	0.99000
Endrin Aldehyde	5286	•							le-006			0.99000
Endosulfar sulfate		•	10586	•		134220			1e-006	3e-013	•	0.99000
Methoxychlor	3586		16729	,				-1e-003	2e-006		-	0.99000
Toxaphene	373	•	1664		8206			1e-003	:	1e-012	:	0.99000
(2)		•	1809	•	9634			4e-002	3e-004	5e-010	:	0.99000
[(3)	•	•	2932	•	18841				2e-004	[1e-009	•	0.99000
(4)	- ' '		5204	•	30071				18e-005			0.99000
(5)	'		1338		10895					4e-011	•	0.99000
(6)			20147	- 1	•	192410			2e-004	_		0.99000
[(7)		•	14758		80896				2e-005	-	0.99975	•
(8)		3595	7515		42918			7.e-002	3e-005	1e-011	•	0.99000
(9)		2081	4408	•	28841		-	0.10160		2e-011	•	0.99000
(10)		44031	9370	194991	,	118020			•			0.99000
alpha-Chlordane	7803	•	373501	71938				-le-002	•	7e-012	•	[0.99000
gamma-Chlordane	8042	16204	38788	76190		357210			•	2e-013		0.99000
Endrin Ketone	3372	7005	16525	35828	•	183540			6e-007	2e-013	:	0.99000
Chlordane	66891	•	33096			-	•		1e-006	2e-014	0.99989	
(2)	•	11450	28650	50873			-		-	2e-012	0.99962	
(3)	• •	19242	51146	•				-1e-002	•		0.99980	
(4)		14325	37026					-8e-003	•		-	0.99000
(5)	-	14325	39317					-8e-003	•	3e-012	0.99984	
\J/			•					-5e - 003			0.99992	
Tetrachloro-m-Xylene	8744	17300	43411									
Decachlorobiphenyl	8466	17285	37520					-8e-004				0.99000
	} 1	1/2001	3/3201	03T22	124960	∠82350]	ZORDR	-2e-003	7e-007	6e-013	0.99977	0.99000 [
	·	i.		———! _∓	ORM	VI S			l	l	I	lI

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC08

Calibration Date(s): 02/13/03 02/19/03

Column: RTX-CLPII ID: 0.53 (mm) Calibration Time(s): 1439 1425

LAB FILE ID:

RF0.005: 8TB2157 RF0.01: 8TB2158 RF0.025: 8TB2159

RF0.05: 8TB2156 RF0.1: 8TB2160 RF0.25: 8TB2161

									COEFFICEN	rs	*RSD	MAX %RSI
				RF0.05					A1	A2	OR R^2	OR R^2
		======					=====			= ======	= ======	-
alpha-BHC	10769		65481	132640	267380	615840	20RDR	1e-003	3e-007	9e-014	0.99992	0.99000
gamma BHC	11576	22821	61108	130820	240270	564000	20RDR	4e-004	4e-007	1.e-013	[0.99981	0.99000
Heptachlor	12105	24364	59245	115700	218940	498220	20RDR	-2e-004	4e-007	2e-013	0.99999	[0.99000
beta-BHC	7007	14343	33315	65022	120440	274290	20RDR	-6e-004	8e-007	6e-013	0.99994	[0.99000
Aldrin	10714	21410	54529	112880	212750	493620	20RDR	3e-004	4e-007	le-013	10.99995	0.99000
delta-BHC	6583	13598	37702	86632	171530	437510	20RDR	le-003	6e-007	-2e-014	0.99984	0.99000
Heptachlor Epoxide	9829	19686	46508	92066	172830	395780	20RDR	-4e-004	5e-007	3e-013	0.99997	0.99000
Endosulfan I	7974	16260	38479	76215	143280	329660	20RDR	~4e-004	6e-007	3e-013	0.99997	0.99000
4,4'-DDE	8083	16777	39749	79766]	152580	357160	20RDR	-2e-004	6e-007	2e-013	0.99998	0.99000
Dieldrin	6781	14002	33932	70117	137180	327280	20RDR	3e-004	7.e-007	2e-013	0.99998	0.99000
Endrin	6006	12373	29919	61403	117900	278080[20RDR	8e-005	8.e-007	3e-013	0.99998	0.99000
4,4'-DDD	4410	9558	23012	49682	99384	246090	20RDR	7e-004	1.e-006	7e-014	0.99995	0.99000
Endosulfan II	6547	13420	30996	62341	117670	277460	20RDR	-5e-004	8e-007	4e-013	0.99995	0.99000
4,4'-DDT	5365	11458	27262	55997	109920	268010	20RDR	7.e-005	9e-007	2e-013	10.99999	10.99000
Endrin Aldehyde	6146	11595	26312	51566	96263	225020	20RDR	-1e-003	le-006	6.e-013	10.99992	0.99000
Endosulfan sulfate	3388	7112	16369	34948	68587	178120	20RDR	-9e-005	le-006	-4e-013	0.99994	10.99000
Methoxychlor	4114	8600	18783	36415	67053	157360	2ORDR	-1e-003	le-006	1e-012		10.99000
Toxaphene	373	1185	1664	3161	8206	17442	20RDR	le-002	3e-004	5e-010		0.99000
(2)	418	1230	1809	3460	9634	19533	20RDR	4e-002		le-009	0.99953	•
(3)	471	1485	2932	6322	18841	42179	20RDR	0.10496	le-004	-4e-011	•	10.99000
(4)	985	2672	5204	10815	30071	63330	-				:	10.99000
(5)	248	659	1338	3225	10895	24557	20RDR	0.14330		:	•	10.99000
(6)	4466	10520	20147	39141	97888	192410	20RDR				•	0.99000
(7)	2899	7293	14758	30200		163350	•			_	•	10.99000
(8)	1428	3595	7515	15539	42918	-	•	7.e-002			•	0.99000
(9)	770	2081	4408	9580	28841			0.10160	•			10.99000
(10)	1641	4403	9370	19499	•	118020					0.99957	
alpha-Chlordane	8891	18068	41910	83116	155970	•	•		6.e-007		0.99996	
gamma-Chlordane	9367	18836	43917	•	•			-4e-004	•		10.99997	•
Endrin Ketone	4417	9291	21876	46205			-	-2e-004			•	0.99000
Chlordane	6689	12574	33096	•			•		8.e-006	•	•	10.99000
(2)	5810	11450	28650	50873				1e-002			•	•
(3)	10031	19242	51146	•				8e-003		•	•	0.99000
(4)	7303	14325	37026			-		·8e-003			0.99973	•
(5)	7593	14822	39317				-	Se-003 Se-003			•	0.99000
 .	•	•	•						•			0.99000
etrachloro-m-Xylene	10827	20755	51040}									•
	*****	20/33	210401	214DI	T \ATON	40/390 2	ZUKUK]-	7e-004 [5e-007	3e-013	neeee n	0.99000
ecachlorobiphenyl	9932	19822	41552					2e-003			0.99966	•

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date(s): 02/13/03 02/19/03

Column: RTX-CLPI ID: 0.53 (mm) Calibration Time(s): 1439 1425

LAB FILE ID: RF0.005: 8TB1157 RF0.01: 8TB1158 RF0.025: 8TB1159

RF0.05: 8TB1156 RF0.1: 8TB1160 RF0.25: 8TB1161

	1	l .				1	1	l c	OEFFICENT	:s	%RSD	MAX %RSD
COMPOUND	RF0.005	•				•	•	•	A1	A2	•	OR R^2
						-	•	•		•	•	•
alpha-BHC	11890	:		154540		•	•	•	3e-007	5e-014	•	0.99000
gamma BHC		•		152790		•	•	•	3e-007	6e-014		0.99000
Heptachlor	16385	: :				:		-4e-004		8e-014		0.99000
beta-BHC	7656					•	•	•	7e-007	8e-014	•	0.99000
Aldrin	13897			150830			•	•	3e-007	1e-013		0.99000
delta-BHC	5696	•				483880	•	•	6e-007	:	•	0.99000
Heptachlor Epoxide	14619		•	•		•	•	-8e-004	•	1e-013	•	0.99000
Endosulfan I				130500		•	•	•	4e-007	1e-013	:	0.99000
4,4'-DDE	10111			117760		•	•		4e-007	9e-014	•	0.99000
Dieldrin	11664	•		125800		•			:	9e-014		0.99000
Endrin_	10440			111540		•			4e-007	le-013		0.99000
4,4'-DDD	4996					344710			7e-007			0.99000
Endosulfan II	9282					-			5e-007	2e-013		0.99000
4,4'-DDT	6209		•	•		365050	•		7e-007	3e-014	•	0.99000
Endrin Aldehyde	5520					222970		•	1e-006	3e-013	0.99984	0.99000
Endosulfan sulfate				•		185840	•		2e-006	-9e-013	0.99991	0.99000
Methoxychlor	3493		•	•		164050	20RDR	-7e-004	le-006	4e-013	0.99983	0.99000
Toxaphene	2963					112110	•		3e-005	1.e-010	0.99990	0.99000
(2)	•	8028	14857	29244	71448	141740	20RDR	2e-002	3e-005	3e-011	0.99985	0.99000
(3)		7959	15088	30243	74886	150190	20RDR	3e-002	3.e-005	3e-011	0.99976	0.99000
(4)	3910	10375	19833	39534	98564	198210	20RDR	4e-002	2e-005	2e-011	0.99971	0.99000
(5)	3656	10013	19824	41056	105360	216300	20RDR	5e-002	2e-005	9.e-012	0.99969	0.99000
(6)	2758	7808	15330	32085	82451	173090	20RDR	6e-002	3e-005	le-011	0.99957	0.99000
(7)	4199	11994	24294	49866	126250	257260	20RDR	5e-002	2e-005	8e-012	0.99969	0.99000
(8)	1844	5664	11855	26219	72501	155330	20RDR	9e-002	3e-005	8e-012	0.99945	0.99000
(9)	2045	5742	11745	25602	69300	150230	20RDR	9e-002	3e-005	1e-011	0.99933	0.99000
(10)	2820	7971	15059	30250	75396	152710	20RDR	4e-002	3e-005	2e-011	0.99969	0.99000
alpha-Chlordane	14871	29786	69401	137180	249690	576760	20RDR	-8e-004	4e-007	le-013	0.99985	0.99000
gamma-Chlordane	15001	30754	71422	136360	258600	588970	20RDR	-6e-004	4e-007	le-013	0.99998	0.99000
Endrin Ketone	4628	9957	23541	52002	98574	249650	20RDR	1e-004	1.e-006	-5e-015	0.99983	0.99000
Chlordane	5269	10585	27314	52197	102010	249380	20RDR	-4e-003	le-005	2e-012	0.99996	0.99000
(2)	9550	19466	51395	96859	186360	444180	20RDR	-3e-003	5e-006	le-012	0.99994	0.99000
(3)	8600	16621	40813	73447	126920	286210	20RDR	-2e-002	7e-006		0.99941	
(4)	15207	28985	75770	139780	270720	630040	20RDR	-4e-003	•	_	0.99995	
(5)	20114	39315						-1e-002			0.99970	
	======			:					•	•		
Tetrachloro-m-Xylene	11660	•		•				-6e-004	•	•	10.99992	
Decachlorobiphenyl	11632	22651						-3e-003	= '	:	0.99935	
·		-, I	-, 	1			,		, !	1	1	1
	١١	'			 '	TIT C	''		·	1	·	

FORM VI SV

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

GC Column: RTX-CLPI ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/17/03

Client Sample ID (PEM): EVAL Lab Sample ID (PEM): EVAL Date Analyzed :02/17/03 Time Analyzed :1352

LAB SAMPLE ID	FILENAME	% DDT BREAKDOWN	% ENDRIN BREAKDOWN
EVAL	8TB1195.d	12.83	1.16

QC LIMITS:

4,4'-DDT breakdown must be less than or equal to 15.0% Endrin breakdown must be less than or equal to 15.0%

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

GC Column: RTX-CLPII ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/17/03

Client Sample ID (PEM): EVAL Lab Sample ID (PEM): EVAL Date Analyzed :02/17/03 Time Analyzed :1352

LAB SAMPLE ID	FILENAME	% DDT BREAKDOWN	% ENDRIN BREAKDOWN
EVAL	8TB2195.d	12.68	1.91

QC LIMITS:

4,4'-DDT breakdown must be less than or equal to 15.0% Endrin breakdown must be less than or equal to 15.0%

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/17/03 Time: 1701

Lab File ID: 8TB1202 Init. Calib. Date(s): 02/13/03 02/17/03

Init. Calib. Times: 1439 2010

GC Column: RTX-CLPI ID: 0.53 (mm)

		RRF5e-002					
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	TRUOMA	AMOUNT	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE
=======================================	=======	=======		=====		========	====
Endosulfan I	5.07e-002	5.e-002	2281600.0	0.01	1.40	15.00	2RDR
gamma BHC	5.04e-002	5.e-002	2600900.0	0.01	0.80	15.00	2RDR
beta-BHC	4.9e-002	5.e-002	1281000.0	0.01	-2.00	15.00	2RDR
delta-BHC	4.57e-002	5.e-002	1225000.0	0.01	-8.60	15.00	2RDR
Heptachlor	5.17e-002	5.e-002	2777100.0	0.01	3.40	15.00	2RDR
Aldrin	5.19e-002	5.e-002	2877400.0	0.01	3.80	15.00	2RDR
Heptachlor Epoxide	5.23e-002	5.e-002	2637100.0	0.01	4.60	15.00	2RDR
gamma-Chlordane	5.18e-002	5.e-002	2623900.0	0.01	3.60	15.00	2RDR
alpha-Chlordane	5.15e-002	5.e-002	2424400.0	0.01	3.00	15.00	2RDR
4,4'-DDE	5.2e-002	5.e-002	2393700.0	0.01	4.00	15.00	2RDR
alpha-BHC	5.14e-002	5.e-002	2670000.0	0.01	2.80	15.00	2RDR
Dieldrin	5.22e-002	5.e-002	2307300.0	0.01	4.40	15.00	2RDR
Endrin	4.99e-002	5.e-002	2003900.0	0.01	-0.20	15.00	2RDR
4,4'-DDD	4.82e-002	5.e-002	1293900.0	0.01	-3.60	15.00	2RDR
Endosulfan II	4.97e-002	5.e-002	1679900.0	0.01	-0.60	15.00	2RDR
4,4'-DDT	4.86e-002	5.e-002	1320600.0	0.01	-2.80	15.00	2RDR
Endrin Aldehyde	5.e-002	5.e-002	889860.00	0.01	0.00	15.00	2RDR
Methoxychlor	4.96e-002	5.e-002	710720.00	0.01	-0.80	15.00	2RDR
Endosulfan sulfate	4.55e-002	5.e-002	437640.00	0.01	-9.00	15.00	2RDR
Endrin Ketone	4.75e-002	5.e-002	791740.00	0.01	-5.00	15.00	2RDR
	li		l <u></u> _			· <u></u> [ll

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/17/03 Time: 1701

Lab File ID: 8TB2202 Init. Calib. Date(s): 02/13/03 02/17/03

Init. Calib. Times: 1439 2010

GC Column: RTX-CLPII ID: 0.53 (mm)

		RRF5e-002					<u> </u>
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	TRUOMA	TRIUOMA	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE
======================================	=======	=======	=======	=====	======	=======	====
4,4'-DDE	5.14e-002	5.e-002	1527400.0	0.01	2.80	15.00	2RDR
gamma BHC	5.05e-002	5.e-002	2522500.0	0.01	1.00	15.00	2RDR
beta-BHC	5.12e-002	5.e-002	1260100.0	0.01	2.40	15.00	2RDR
delta-BHC	4.81e-002	5.e-002	1485400.0	0.01	-3.80	15.00	2RDR
Heptachlor	5.17e-002	5.e-002	2254400.0	0.01	3.40	15.00	2RDR
Aldrin	5.26e-002	5.e-002	2165600.0	0.01	5.20	15.00	2RDR
Heptachlor Epoxide	5.06e-002	5.e-002	1761500.0	0.01	1.20	15.00	2RDR
gamma-Chlordane	5.04e-002	5.e-002	1659600.0	0.01	0.80	15.00	2RDR
alpha-Chlordane	5.13e-002	5.e-002	1564200.0	0.01	2.60	15.00	2RDR
Endosulfan I	5.12e-002	5.e-002	1451200.0	0.01	2.40	15.00	2RDR
alpha-BHC	4.98e-002	5.e-002	2571000.0	0.01	-0.40	15.00	2RDR
Dieldrin	5.08e-002	5.e-002	1344400.0	0.01	1.60	15.00	2RDR
Endrin	5.12e-002	5.e-002	1198600.0	0.01	2.40	15.00	2RDR
4,4'-DDD	4.97e-002	5.e-002	1089600.0	0.01	-0.60	15.00	2RDR
Endosulfan II	5.09e-002	5.e-002	1228200.0	0.01	1.80	15.00	2RDR
4,4'-DDT	5.15e-002	5.e-002	809200.00	0.01	3.00	15.00	2RDR
Endrin Aldehyde	5.06e-002	5.e-002	986200.00	0.01	1.20	15.00	2RDR
Endosulfan sulfate	4.73e-002	5.e-002	657760.00	0.01	-5.40	15.00	2RDR
Methoxychlor	5.36e-002	5.e-002	607000.00	0.01	7.20	15.00	2RDR
Endrin Ketone	4.78e-002	5.e-002	1104200.0	0.01	-4.40	15.00	2RDR
		<u> </u>	ll	<u> </u>			

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

GC Column: RTX-CLPI ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/19/03

Client Sample ID (PEM): EVAL Lab Sample ID (PEM): EVAL Date Analyzed :02/19/03 Time Analyzed :1144

LAB SAMPLE ID	FILENAME	% DDT BREAKDOWN	% ENDRIN BREAKDOWN
EVAL	8TB3038.d	7.07	1.70

QC LIMITS:

4,4'-DDT breakdown must be less than or equal to 15.0% Endrin breakdown must be less than or equal to 15.0%

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

GC Column: RTX-CLPII ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/19/03

Client Sample ID (PEM): EVAL Lab Sample ID (PEM): EVAL Date Analyzed :02/19/03

Time Analyzed :1144

LAB SAMPLE ID	FILENAME	% DDT BREAKDOWN	% ENDRIN BREAKDOWN
EVAL	8TB4038.d	7.03	2.97

QC LIMITS:

4,4'-DDT breakdown must be less than or equal to 15.0% Endrin breakdown must be less than or equal to 15.0%

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/18/03 Time: 0632

Init. Calib. Times: 1439 2010

GC Column: RTX-CLPI ID: 0.53 (mm)

		RRF5e-002					i	Ī
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	·
	AMOUNT	TRUDOMA	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE	•
**************	== =======	========	=======	=====		=======	====	ı
alpha-BHC	6.03e-002	5.e-002	3141300.0	0.01	20.60	15.00	2RDR	<-
gamma BHC	5.78e-002	5.e-002	2983300.0	0.01	15.60			
Heptachlor	5.44e-002	5.e-002	2913800.0	0.01		•		1
beta-BHC	5.49e-002	5.e-002	1430400.0	0.01	•			
Aldrin	5.53e-002	5.e-002	3060600.0	0.01	!			
delta-BHC	5.83e-002		1593100.0		!		•	•
Heptachlor Epoxide	5.41e-002		2723500.0				!	!
Endosulfan I	5.47e-002		2452100.0	•			!	,
4,4'-DDE	5.08e-002	5.e-002	2337800.0	0.01	1.60		ļ.	!
Dieldrin	5.34e-002		2359400.0		6.80		!	
Endrin	5.47e-002		2195300.0		9.40		!	!
4,4'-DDD	6.22e-002		1680200.0				!	
Endosulfan II	5.66e-002		1905100.0		13.20			,
4,4'-DDT_	4.29e-002		1164100.0		-14.20			,
Endrin Aldehyde	5.68e-002		1007600.0		13.60			•
Endosulfan sulfate	6.89e-002	,	680760.00					•
Methoxychlor	4.79e-002		688540.00		-4.20			1
alpha-Chlordane	5.43e-002		2548600.0		8.60			!
gamma-Chlordane	5.48e-002		2766900.0		9.60			,
Endrin Ketone	7.92e-002		1332200.0	0.01	58.40	15.00		•
	= =======			!	======	========	====	`
Tetrachloro-m-Xylene	5.92e-002	5.e-002	2161200.0		18.40			
Decachlorobiphenyl	5.45e-002	:	1677200.0	0.01	9.00	15.00		!
	_i			3.01	2.00	15.00	ZKDK	ĺ
			·			i		i

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/18/03 Time: 0632

Init. Calib. Times: 1439 2010

GC Column: RTX-CLPII ID: 0.53 (mm)

	<u> </u>	RRF5e-002		T	1	1	Г	'n
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	·
	AMOUNT	AMOUNT	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE	•
		=======	-======	=====	======		!	•
alpha-BHC	5.44e-002		2571000.0	0.01	8.80	•	,	
gamma BHC	_ 5.46e-002	5.e-002	2522500.0	0.01	9.20	i	•	•
Heptachlor	_ 5.88e-002	5.e-002	2254400.0	0.01	17.60	•		
beta-BHC	5.31e-002	5.e-002	1260100.0	0.01	•			
Aldrin	5.52e-002	5.e-002	2165600.0	0.01		,		
delta-BHC	5.77e-002		1485400.0		!			
Heptachlor Epoxide	5.43e-002		1761500.0					
Endosulfan I	5.35e-002		1451200.0				į	•
4,4'-DDE	5.03e-002		1527400.0				•	ı
Dieldrin	5.25e-002		1344400.0					•
Endrin_	5.37e-002		1198600.0					
4,4'-DDD	6.06e-002		1089600.0		21.20			•
Endosulfan II	5.58e-002		1228200.0		11.60			, -
4,4'-DDT	4.3e-002		809200.00		-14.00	~~.~~		
Endrin Aldehyde	5.37e-002		986200.00		7.40			
Endosulfan sulfate	6.8e-002		657760.00		36.00	15.00		
Methoxychlor_	4.89e-002		607000.00		-2.20			
alpha-Chlordane	5.33e-002		1564200.0		6.60	15.00	1	:
gamma-Chlordane	5.34e-002		1659600.0		6.80	15.00		ı
Endrin Ketone	7.56e-002		1104200.0	0.01		15.00	•	
	=======		========	,	51.20	15.00		<
Tetrachloro-m-Xylene	5.86e-002		1876400.0	0.01	17.00	į.	====	ļ
Decachlorobiphenyl	5.31e-002		1426600.0	1	17.20	15.00		<
	13.316-002	3.6-002	1420000.0	0.01	6.20	15.00	2RDR	

FORM 8 SEMIVOLATILE ANALYTICAL SEQUENCE

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

GC Column: RTX-CLPI ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/17/03

Instrument ID: GC08

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO	GATE RT FROM TCX:	IBRATION			
	DCD: 10:72	ich.	4.17			
	CLIENT	LAB	DATE	TIME	DCB	TCX
	SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	========	=========	========	======	======	======
01	IND SOURCE	INDAB 0.05PP	02/19/03	1452		lI
02	ICAL			1519		ll
03	CV	CHLORDANE 0.	02/19/03	1547		
04	S1SW-2-0103	WT0246-11	02/20/03	0020	16.71	4.17
05	CV	INDAB 0.05PP	02/20/03	0208	16.71	4.17
06	EVAL EVAL		02/20/03	0955	l	İİ
07	CA	INDAB 0.05PP	02/20/03	1022	16.71	4.17
0.8	WG1560-BLANK	WG1560-1	02/20/03	1336	16.71	4.17
09	WG1560-LCS	WG1560-2	02/20/03	1403	16.71	4.17
10	WG1560-LCSD	WG1560-3	02/20/03	1430	16.71	4.17
11	S1MW-7-0103	WT0233-6	02/20/03	1619	16.71	4.17
12	0103-DUP-01	WT0233-7	02/20/03	1646	16.69	4.17
13	cv	INDAB 0.05PP	02/20/03	1746	16.71	4.17
14						į
15						
16						
17						i
18						
19						
20						

QC LIMITS

DCB = Decachlorobiphenyl (+/- 0.07 MINUTES)
TCX = Tetrachloro-m-Xylene (+/- 0.07 MINUTES)

Column used to flag retention time values with an asterisk.

* Values outside of QC limits.

page 2 of 2

FORM 8 SEMIVOLATILE ANALYTICAL SEQUENCE

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

GC Column: RTX-CLPII ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/17/03

Instrument ID: GC08

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO	GATE RT FROM :	INITIAL CAL	BRATION		
	DCB: 20.72	TCX:	5.05			
	CLIENT	LAB	DATE	TIME	DCB	TCX
	SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	========	=========	=======		=======	======
01	IND SOURCE	INDAB 0.05PP	02/19/03	1452		i
02	ICAL	TOXAPHENE 1.	02/19/03	1519		i
03	CV	CHLORDANE 0.	02/19/03	1547		i
04	S1SW-2-0103	WT0246-11	02/20/03	0020	20.72	5.05
05	CV	INDAB 0.05PP	02/20/03	0208	20.72	5.05
06	EVAL	EVAL	02/20/03	0955	İ	j
07	CV	INDAB 0.05PP	02/20/03	1022	20.72	5.05
08	WG1560-BLANK	WG1560-1	02/20/03	1336	20.72	5.05
09	WG1560-LCS	WG1560-2	02/20/03	1403	20.72	5.05 İ
10	WG1560-LCSD	WG1560-3	02/20/03	1430	20.72	5.05
11	S1MW-7-0103	WT0233-6	02/20/03	1619	20.72	5.05
12	0103-DUP-01	WT0233-7	02/20/03	1646	20.72	5.05
13	CV	INDAB 0.05PP	02/20/03	1746	20.72	5.05
14						i
15	·					
16	·					
17		<u></u>				
18						
19						
20						

QC LIMITS

DCB = Decachlorobiphenyl (+/-0.07 MINUTES)

TCX = Tetrachloro-m-Xylene (+/- 0.07 MINUTES)

* Values outside of QC limits.

page 2 of 2

[#] Column used to flag retention time values with an asterisk.

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/19/03 Time: 1452

Init. Calib. Times: 1439 1425

GC Column: RTX-CLPI ID: 0.53 (mm)

		RRF5e-002					
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	TRUOMA	AMOUNT	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE
				=====	======	========	====
Endosulfan I	5.14e-002	5.e-002	2607200.0	0.01	2.80	15.00	2RDR
gamma BHC	5.02e-002	5.e-002	2999800.0	0.01	0.40	15.00	2RDR
beta-BHC	5.03e-002	5.e-002	1387900.0	0.01	0.60	15.00	2RDR
delta-BHC	4.76e-002	5.e-002	1623800.0	0.01	-4.80	15.00	2RDR
Heptachlor	5.22e-002	5.e-002	3168700.0	0.01	4.40	15.00	2RDR
Aldrin	5.e-002	5.e-002	3022700.0	0.01	0.00	15.00	2RDR
Heptachlor Epoxide	5.22e-002	5.e-002	2779000.0	0.01	4.40	15.00	2RDR
gamma-Chlordane	4.98e-002	5.e-002	2703400.0	0.01	-0.40	15.00	2RDR
alpha-Chlordane	5.16e-002	5.e-002	2729600.0	0.01	3.20	15.00	2RDR
4,4'-DDE	5.01e-002	5.e-002	2329200.0	0.01	0.20	15.00	2RDR
alpha-BHC	5.01e-002	5.e-002	3079900.0	0.01	0.20	15.00	2RDR
Dieldrin	5.15e-002	5.e-002	2509900.0	0.01	3.00	15.00	2RDR
Endrin	5.07e-002	5.e-002	2211000.0	0.01	1.40	15.00	2RDR
4,4'-DDD	4.8e-002	5.e-002	1282300.0	0.01	-4.00	15.00	2RDR
Endosulfan II	4.97e-002	5.e-002	1807900.0	0.01	-0.60	15.00	2RDR
4,4'-DDT	4.99e-002	5.e-002	1456200.0	0.01	-0.20	15.00	2RDR
Endrin Aldehyde	5.02e-002	5.e-002	946540.00	0.01	0.40	15.00	2RDR
Methoxychlor	4.99e-002	5.e-002	686820.00	0.01	-0.20	15.00	2RDR
Endosulfan sulfate	4.78e-002	5.e-002	637860.00	0.01	-4.40	15.00	2RDR
Endrin Ketone	4.86e-002	5.e-002	967780.00	0.01	-2.80	15.00	2RDR

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/19/03 Time: 1452

Lab File ID: 8TB4045 Init. Calib. Date(s): 02/13/03 02/19/03

Init. Calib. Times: 1439 1425

GC Column: RTX-CLPII ID: 0.53 (mm)

	l	RRF5e-002					
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE
=======================================	=======	=======	=======	=====	======	=======	====
4,4'-DDE	5.02e-002	5.e-002	1581600.0	0.01	0.40	15.00	2RDR
gamma BHC	5.e-002	5.e-002	2497900.0	0.01	0.00	15.00	2RDR
beta-BHC	4.98e-002	5.e-002	1269100.0	0.01	-0.40	15.00	2RDR
delta-BHC	4.92e-002	5.e-002	1659800.0	0.01	-1.60	15.00	2RDR
Heptachlor	5.02e-002	5.e-002	2298900.0	0.01	0.40	15.00	2RDR
Aldrin	5.11e-002	5.e-002	2251900.0	0.01	2.20	15.00	2RDR
Heptachlor Epoxide	5.08e-002	5.e-002	1837400.0	0.01	1.60	15.00	2RDR
gamma-Chlordane	5.08e-002	5.e-002	1750700.0	0.01	1.60	15.00	2RDR
alpha-Chlordane	5.08e-002	5.e-002	1655600.0	0.01	1.60	15.00	2RDR
Endosulfan I	5.06e-002	5.e-002	1516600.0	0.01	1.20	15.00	2RDR
alpha-BHC	4.94e-002	5.e-002	2670700.0	0.01	-1.20	15.00	2RDR
Dieldrin	4.99e-002	5.e-002	1389900.0	0.01	-0.20	15.00	2RDR
Endrin	4.9e-002	5.e-002	1186200.0	0.01	-2.00	15.00	2RDR
4,4'-DDD	4.9e-002	5.e-002	968840.00	0.01	-2.00	15.00	2RDR
Endosulfan II	5.03e-002	5.e-002	1227000.0	0.01	0.60	15.00	2RDR
4,4'-DDT	4.98e-002	5.e-002	1106000.0	0.01	-0.40	15.00	2RDR
Endrin Aldehyde	4.96e-002	5.e-002	1000600.0	0.01	-0.80	15.00	2RDR
Endosulfan sulfate	4.85e-002	5.e-002	661700.00	0.01	-3.00	15.00	2RDR
Methoxychlor	5.19e-002	5.e-002	732660.00	0.01	3.80	15.00	2RDR
Endrin Ketone	4.85e-002	5.e-002	866220.00	0.01	-3.00	15.00	2RDR
]						

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/20/03 Time: 0208

Init. Calib. Times: 1439 1425

GC Column: RTX-CLPI ID: 0.53 (mm)

	1	RRF5e-002	1			1	1	1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	1
	AMOUNT	AMOUNT	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE	1
=======================================	= =======	=======	=======	=====	======	=======	====	j
alpha-BHC	5.33e-002	5.e-002	3281400.0	0.01	6.60	15.00	2RDR	i
gamma BHC	5.42e-002	5.e-002	3231100.0	0.01	8.40	•	<u>!</u>	
Heptachlor	5.51e-002	5.e-002	3338600.0	0.01	10.20	•	•	1
beta-BHC	5.95e-002		1634700.0	0.01	19.00		•	
Aldrin	5.23e-002	5.e-002	3161100.0	0.01	4.60	•		
delta-BHC	4.73e-002	5.e-002	1614100.0	0.01	-5.40			
Heptachlor Epoxide	5.65e-002	5.e-002	2998000.0	0.01	13.00			
Endosulfan I	5.19e-002	5.e-002	2635000.0	0.01	3.80		•	•
4,4'-DDE	5.64e-002	5.e-002	2620300.0	0.01	12.80	•	•	
Dieldrin	5.38e-002	5.e-002	2619000.0	0.01	7.60			1
Endrin_	5.23e-002		2281800.0					•
4,4'-DDD_	5.81e-002	5.e-002	1561900.0	0.01	16.20	•	•	•
Endosulfan II	5.5e-002	5.e-002	1993600.0	0.01		,		į .
4,4'-DDT	5.06e-002	5.e-002	1475200.0	0.01	1.20		!!!	•
Endrin Aldehyde	5.59e-002	5.e-002	1050800.0	0.01	11.80			
Endosulfan sulfate	5.13e-002		685620.00		2.60			•
Methoxychlor	5.74e-002		787360.00		14.80			•
alpha-Chlordane	5.24e-002		2766800.0		4.80	15.00		!
gamma-Chlordane	5.37e-002		2905800.0		7.40	15.00		•
Endrin Ketone	6.6e-002		1314700.0		32.00	15.00		
	=======			:	=======	========	:	i
Tetrachloro-m-Xylene	5.61e-002	5.e-002	2379200.0	0.01	12.20	15.00		[
Decachlorobiphenyl	5.45e-002		1745300.0		9.00	15.00		
	i i			· · · · -	1.50			
	·							

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/20/03 Time: 0208

Init. Calib. Times: 1439 1425

GC Column: RTX-CLPII ID: 0.53 (mm)

	1	RRF5e-002					1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE
=======================================	=======	1		=====		=======	====
alpha-BHC	5.21e-002	5.e-002	2811900.0	0.01	4.20	15.00	2RDR
gamma BHC	5.51e-002	5.e-002	2746600.0	0.01	10.20	15.00	2RDR
Heptachlor	5.31e-002	5.e-002	2427600.0	0.01	6.20	15.00	2RDR
beta-BHC	5.38e-002	5.e-002	1363900.0	0.01	7.60	15.00	2RDR
Aldrin	5.33e-002		2345300.0		6.60	15.00	2RDR
delta-BHC	4.56e-002	5.e-002	1536800.0	0.01	-8.80	15.00	2RDR
Heptachlor Epoxide	5.27e-002		1903700.0		5.40	15.00	2RDR
Endosulfan I	5.22e-002	5.e-002	1560700.0	0.01	4.40	15.00	2RDR
4,4'-DDE	5.19e-002	5.e-002	1631800.0	0.01	3.80	15.00	2RDR
Dieldrin	5.12e-002	5.e-002	1425100.0	0.01	2.40	15.00	2RDR
Endrin	5.28e-002	5.e-002	1275800.0	0.01	5.60	15.00	2RDR
4,4'-DDD	5.25e-002	5.e-002	1037500.0	0.01	5.00	15.00	2RDR
Endosulfan II	5.29e-002	5.e-002	1288800.0	0.01	5.80	15.00	2RDR
4,4'-DDT	4.84e-002	5.e-002	1075700.0	0.01	-3.20	15.00	2RDR
Endrin Aldehyde	5.23e-002	5.e-002	1052900.0	0.01	4.60	15.00	2RDR
Endosulfan sulfate	4.95e-002	5.e-002	675680.00	0.01	-1.00	15.00	2RDR
Methoxychlor	5.13e-002	5.e-002	725320.00	0.01	2.60	15.00	2RDR
alpha-Chlordane	5.2e~002	5.e-002	1694100.0	0.01	4.00	15.00	2RDR
gamma-Chlordane	5.2e-002	5.e-002	1792600.0	0.01	4.00	15.00	2RDR
Endrin Ketone	6.32e-002	5.e-002	1124100.0	0.01	26.40	15.00	2RDR
*********	=======	=======	=======	====	======	========	====
Tetrachloro-m-Xylene	5.55e-002	5.e-002	2100300.0	0.01	11.00	15.00	2RDR
Decachlorobiphenyl	5.39e-002	5.e-002	1570900.0	0.01	7.80	15.00	2RDR
	 			İ İ			

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

GC Column: RTX-CLPI ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/19/03

Client Sample ID (PEM): EVAL Lab Sample ID (PEM): EVAL Date Analyzed :02/20/03 Time Analyzed :0955

LAB SAMPLE ID	FILENAME	% DDT BREAKDOWN	% ENDRIN BREAKDOWN
25252222222222222	=======================================		=======================================
EVAL	8TB3083.d	9.95	1.69
<u></u>		<u> </u>	

QC LIMITS:

4,4'-DDT breakdown must be less than or equal to 15.0% Endrin breakdown must be less than or equal to 15.0%

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

GC Column: RTX-CLPII ID: 0.53 (mm) Init. Calib. Date(s): 02/13/03 02/19/03

Client Sample ID (PEM): EVAL Lab Sample ID (PEM): EVAL Date Analyzed :02/20/03 Time Analyzed :0955

LAB SAMPLE ID	FILENAME	% DDT	% ENDRIN
		BREAKDOWN	BREAKDOWN
		==========	=======================================
EVAL	8TB4083.d	10.10	2.88

QC LIMITS:

4,4'-DDT breakdown must be less than or equal to 15.0% Endrin breakdown must be less than or equal to 15.0%

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/20/03 Time: 1022

Init. Calib. Times: 1439 1425

GC Column: RTX-CLPI ID: 0.53 (mm)

		RRF5e-002]
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	TRUDOMA	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE
====	=======	========	=======	=====	======	========	====
alpha-BHC	5.23e-002	5.e-002	3215100.0	0.01	4.60	15.00	2RDR
gamma BHC	5.23e-002		3123600.0		4.60	15.00	2RDR
Heptachlor	5.31e-002	5.e-002	3221000.0	0.01	6.20	15.00	2RDR
beta-BHC	5.32e-002	5.e-002	1466300.0	0.01	6.40	15.00	2RDR
Aldrin	5.07e-002	5.e-002	3065100.0	0.01	1.40	15.00	2RDR
delta-BHC	4.3e-002	5.e-002	1458800.0	0.01	-14.00	15.00	2RDR
Heptachlor Epoxide	5.45e-002	5.e-002	2894300.0	0.01	9.00	15.00	2RDR
Endosulfan I	5.24e-002	5.e-002	2655300.0	0.01	4.80	15.00	2RDR
4,4'-DDE	5.1e-002	5.e-002	2370800.0	0.01	2.00	15.00	2RDR
Dieldrin	5.3e-002	5.e-002	2582400.0	0.01	6.00	15.00	2RDR
Endrin	5.16e-002	5.e-002	2252400.0	0.01	3.20	15.00	2RDR
4,4'-DDD	5.03e-002	5.e-002	1345700.0	0.01	0.60	15.00	2RDR
Endosulfan II	5.17e-002	5.e~002	1880300.0	0.01	3.40	15.00	2RDR
4,4'-DDT	4.8e-002	5.e-002	1398300.0	0.01	-4.00	15.00	2RDR
Endrin Aldehyde	5.33e-002	5.e-002	1002100.0	0.01	6.60	15.00	2RDR
Endosulfan sulfate	4.56e-002	5.e-002	607220.00	0.01	-8.80	15.00	2RDR
Methoxychlor	5.16e-002	5.e-002	709600.00	0.01	3.20	15.00	2RDR
alpha-Chlordane	5.32e-002	5.e-002	2805800.0	0.01	6.40	15.00	2RDR
gamma-Chlordane	5.06e-002	5.e-002	2747300.0	0.01	1.20	15.00	2RDR
Endrin Ketone	5.73e-002	5.e-002	1140500.0	0.01	14.60	15.00	2RDR
=======================================	=======	=======	=======	=====	======		
Tetrachloro-m-Xylene	5.43e-002	5.e-002	2305400.0	0.01	8.60	15.00	2RDR
Decachlorobiphenyl	5.45e-002	5.e-002	1745600.0	0.01	9.00	15.00	2RDR

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/20/03 Time: 1022

Lab File ID: 8TB4084 Init. Calib. Date(s): 02/13/03 02/19/03

Init. Calib. Times: 1439 1425

GC Column: RTX-CLPII ID: 0.53 (mm)

	1	RRF5e-002	İ	<u> </u>		1	Ī	1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV	ĺ
	TRUDOMA	AMOUNT	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE	ĺ
=======================================			========	=====	======	=======	====	ĺ
alpha-BHC	5.23e-002	5.e-002	2823000.0	0.01	4.60	15.00	2RDR	ĺ
gamma BHC	5.15e-002	5.e-002	2569600.0	0.01	3.00	15.00	2RDR	i
Heptachlor	5.33e-002	5.e-002	2435400.0	0.01	6.60	15.00	2RDR	i
beta-BHC	5.3e-002	5.e-002	1345300.0	0.01	6.00	15.00	2RDR	ı
Aldrin	5.12e-002	5.e-002	2253800.0	0.01	2.40	15.00	2RDR	ı
delta-BHC	4.08e-002	5.e-002	1369100.0	0.01	-18.40	15.00	2RDR	<-
Heptachlor Epoxide	5.15e-002	5.e-002	1861500.0	0.01	3.00	15.00	2RDR	
Endosulfan I	5.15e-002	5.e-002	1541400.0	0.01	3.00	15.00	2RDR	l
4,4'-DDE	5.15e-002	5.e-002	1621300.0	0.01	3.00	15.00	2RDR	į
Dieldrin	5.08e-002	5.e-002	1414500.0	0.01	1.60	15.00	2RDR	
Endrin	5.06e-002	5.e-002	1224400.0	0.01	1.20	15.00	2RDR	:
4,4'-DDD	4.97e-002	5.e-002	981280.00	0.01	-0.60	15.00	2RDR	i
Endosulfan II	5.16e-002	5.e-002	1258900.0	0.01	3.20	15.00	2RDR	
4,4'-DDT	4.84e-002	5.e-002	1075300.0	0.01	-3.20	15.00	2RDR	ı
Endrin Aldehyde	5.12e-002	5.e-002	1031800.0	0.01	2.40	15.00	2RDR	í
Endosulfan sulfate	4.52e-002	5.e-002	617400.00	0.01	-9.60	15.00	2RDR	í
Methoxychlor	5.08e-002	5.e-002	717820.00	0.01	1.60	15.00	2RDR	
alpha-Chlordane	5.16e-002	5.e-002	1681400.0	0.01	3.20	15.00	2RDR	
gamma-Chlordane	5.13e-002	5.e-002	1768800.0	0.01	2.60	15.00	2RDR	
Endrin Ketone	5.75e-002	5.e-002	1025000.0	0.01	15.00	15.00	2RDR	
~======================================	=======	=======	=======	=====	======	=======	====	
Tetrachloro-m-Xylene	5.29e-002	5.e-002	2008300.0	0.01	5.80	15.00	2RDR	
Decachlorobiphenyl	5.27e-002	5.e-002	1539200.0	0.01	5.40	. 15.00	2RDR	
	l			li	li			

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

Instrument ID: GC08 Calibration Date: 02/20/03 Time: 1746

Init. Calib. Times: 1439 1425

GC Column: RTX-CLPI ID: 0.53 (mm)

COMPOUND RRF or or CCAL MIN %D or MAX %D or AMOUNT AMOUNT RRF5e-002 RRF %DRIFT	TYPE = ==== 0 2RDR 0 2RDR 0 2RDR 0 2RDR
	= ==== 0 2RDR 0 2RDR 0 2RDR 0 2RDR
! ! ! ! ! !	0 2RDR 0 2RDR 0 2RDR 0 2RDR
alpha-BHC	2RDR 2RDR 2RDR
alpha bito	2RDR 2RDR
gamma BHC5.29e-002 5.e-002 3155300.0 0.01 5.80 15.0	2RDR
Heptachlor 5.55e-002 5.e-002 3364800.0 0.01 11.00 15.0	,
beta-BHC 5.4e-002 5.e-002 1487900.0 0.01 8.00 15.0	מממכ נ
Aldrin 5.26e-002 5.e-002 3173900.0 0.01 5.20 15.0) 2 KDR
delta-BHC 4.38e-002 5.e-002 1485800.0 0.01 -12.40 15.0	0 2RDR
Heptachlor Epoxide 5.66e-002 5.e-002 3001900.0 0.01 13.20 15.0	D ZRDR
Endosulfan I 5.29e-002 5.e-002 2680600.0 0.01 5.80 15.0	2RDR
4,4'-DDE5.15e-002 5.e-002 2396700.0 0.01 3.00 15.0	2RDR
Dieldrin) 2RDR
Endrin5.23e-002 5.e-002 2281900.0 0.01 4.60 15.0	2RDR
4.4'-DDD 4.85e-002 5.e-002 1297400.0 0.01 -3.00 15.0	2RDR
Endosulfan II 5.38e-002 5.e-002 1951100.0 0.01 7.60 15.0) 2RDR
4.4'-DDT4.92e-002 5.e-002 1434300.0 0.01 -1.60 15.0	2RDR
Endrin Aldehyde 5.43e-002 5.e-002 1021400.0 0.01 8.60 15.0	2RDR
Endosulfan sulfate 4.51e-002 5.e-002 600740.00 0.01 -9.80 15.0	2RDR
Methoxychlor 5.06e-002 5.e-002 696500.00 0.01 1.20 15.0	2RDR
alpha-Chlordane 5.4e-002 5.e-002 2845600.0 0.01 8.00 15.0	2RDR
gamma-Chlordane 5.38e-002 5.e-002 2908300.0 0.01 7.60 15.0	2RDR
Endrin Ketone 5.75e-002 5.e-002 1144300.0 0.01 15.00 15.0	2RDR
_======================================	= ====
Tetrachloro-m-Xylene 5.45e-002 5.e-002 2316000.0 0.01 9.00 15.0	2RDR
Decachlorobiphenyl 5.51e-002 5.e-002 1762500.0 0.01 10.20 15.0	2RDR
	_

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC08

Calibration Date: 02/20/03 Time: 1746

Lab File ID: 8TB4100

Init. Calib. Date(s): 02/13/03 02/19/03

Init. Calib. Times: 1439 1425

GC Column: RTX-CLPII ID: 0.53 (mm)

	l	RRF5e-002]		1	
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CURV
	AMOUNT	AMOUNT	RRF5e-002	RRF	%DRIFT	%DRIFT	TYPE
	=======		=======	=====	======	=======	====
alpha-BHC	5.23e-002	5.e-002	2823700.0	0.01	4.60	15.00	2RDR
gamma BHC	5.31e-002	5.e-002	2649600.0	0.01	6.20	15.00	2RDR
Heptachlor	5.31e-002	5.e-002	2426700.0	0.01	6.20	15.00	2RDR
beta-BHC	5.24e-002	5.e-002	1329900.0	0.01	4.80	15.00	2RDR
Aldrin	5.36e-002	5.e-002	2356600.0	0.01	7.20	15.00	2RDR
delta-BHC	4.43e-002	5.e-002	1489700.0	0.01	-11.40	15.00	2RDR
Heptachlor Epoxide	5.21e-002		1881900.0		4.20	15.00	2RDR
Endosulfan I	5.17e-002	5.e-002	1547100.0	0.01	3.40	15.00	2RDR
4,4'-DDE	5.27e-002	5.e-002	1658000.0	0.01	5.40	15.00	2RDR
Dieldrin	5.27e-002	5.e-002	1467700.0	0.01	5.40	15.00	2RDR
Endrin	5.24e-002		1267700.0	0.01	4.80	15.00	2RDR
4,4'-DDD	5.01e-002	5.e-002	989780.00	0.01	0.20	15.00	2RDR
Endosulfan II	5.29e-002	5.e-002	1287500.0	0.01	5.80	15.00	2RDR
4,4'-DDT	5.16e-002	5.e-002	1146000.0	0.01	3.20	15.00	2RDR
Endrin Aldehyde	5.33e-002	5.e-002	1071400.0	0.01	6.60	15.00	2RDR
Endosulfan sulfate	4.63e-002	5.e-002	632380.00	0.01	-7.40	15.00	2RDR
Methoxychlor	5.25e-002	5.e-002	740740.00	0.01	5.00	15.00	2RDR
alpha-Chlordane	5.14e-002	5.e-002	1675900.0	0.01	2.80	15.00	2RDR
gamma-Chlordane	5.21e-002	5.e-002	1793600.0	0.01	4.20	15.00	2RDR
Endrin Ketone	5.64e-002	5.e-002	1005200.0	0.01	12.80	15.00	2RDR
	=======		=======	=====	======	=======	====
Tetrachloro-m-Xylene	5.48e-002	5.e-002	2076100.0	0.01	9.60	15.00	2RDR
Decachlorobiphenyl	5.55e-002	5.e-002	1613100.0	0.01	11.00	15.00	2RDR
							i

KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client:

Project: NAF KEY WEST CT0233

PO No:

Sample Date: 02/03/03
Received Date: 02/03/03
Extraction Date: 02/04/03
Analysis Date: 02/20/03

Report Date: 02/24/2003

Matrix: WATER % Solids: NA

Lab ID: WG1560-1

Client ID: WG1560-Blank

SDG: CTO233-4 Extracted by: JCG

Extraction Method: SW846 3510

Analyst: LRS

Analysis Method: SW846 8081A

Lab Prep Batch: WG1560

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL Adj.PQL Adj.MDL
319-84-6	alpha-BHC	σ	0.050	1.0	0.050 0.050 0.025
58-89-9	gamma BHC	U	0.050	1.0	0.050 0.050 0.022
76-44-8	Heptachlor	σ	0.050	1.0	0.050 0.050 0.024
319-85-7	beta-BHC	U	0.050	1.0	0.050 0.050 0.042
309-00-2	Aldrin	υ	0.050	1.0	0.050 0.050 0.022
319-86-8	delta-BHC	υ	0.050	1.0	0.050 0.050 0.029
1024-57-3	Heptachlor Epoxide	υ ·	0.050	1.0	0.050 0.050 0.023
959-98-8	Endosulfan I	ប	0.050	1.0	0.050 0.050 0.018
72-55-9	4,4'-DDE	σ	0.10	1.0	0.10 0.10 0.028
60-57-1	Dieldrin	σ	0.10	1.0	0.10 0.10 0.017
72-20-8	Endrin	Ū	0.10	1.0	0.10 0.10 0.018
72-54-8	4,4'-DDD	U	0.10	1.0	0.10 0.10 0.028
33213-65-9	Endosulfan II	U	0:10	1.0	0.10 0.10 0.016
50-29-3	4,4'-DDT	Ū	0.10	1.0	0.10 0.10 0.030
7421-36-3	Endrin Aldehyde	U	0.10	1.0	0.10 0.10 0.021
1031-07-8	Endosulfan sulfate	Ū	0.10	1.0	0.10 0.10 0.023
72-43-5	Methoxychlor	, T	0.50	1.0	0.50 0.50 0.045
8001-35-2	Toxaphene	U	1.0	1.0	1.0 1.0 0.92
5103-71-9	alpha-Chlordane	U	0.050	1.0	0.050 0.050 0.019
5103-74-2	gamma-Chlordane	Ŭ	0.050	1.0	0.050 0.050 0.019
53494-70-5	Endrin Ketone	U	0.10	1.0	0.10 0.10 0.020
12789-03-6	Chlordane	ប	0.50	1.0	0.50 0.50 0.15
877-09-8	Tetrachloro-m-Xylene		69%		
2051-24-3	Decachlorobiphenyl		80%		

Page 01 of 01 8TB3090.d

KATAHDIN ANALYTICAL SERVICES

Report of Analytical Results

Client:

Project: NAF KEY WEST CTO233

PO No:

Sample Date: 02/06/03 Received Date: 02/06/03 Extraction Date: 02/07/03 Analysis Date: 02/17/03

Report Date: 02/24/2003

Matrix: WATER % Solids: NA

Lab ID: WG1590-1

Client ID: WG1590-Blank

SDG: CTO233-4 Extracted by: JCG

Extraction Method: SW846 3510

Analyst: LRS

Analysis Method: SW846 8081A

Lab Prep Batch: WG1590

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
319-84-6	alpha-BHC	υ	0.050	1.0	0.050	0.050	0.025
58-89-9	gamma BHC	υ	0.050	1.0	0.050	0.050	0.022
76-44-8	Heptachlor	υ	0.050	1.0	0.050	0.050	0.024
319-85-7	beta-BHC	υ	0.050	1.0	0.050	0.050	0.042
309-00-2	Aldrin	σ	0.050	1.0	0.050	0.050	0.022
319-86-8	delta-BHC	U	0.050	1.0	0.050	0.050	0.029
1024-57-3	Heptachlor Epoxide	U	0.050	1.0	0.050	0.050	0.023
959-98-8	Endosulfan I	ប	0.050	1.0	0.050	0.050	0.018
72-55-9	4,4'-DDE	υ	0.10	1.0	0.10	0.10	0.028
60-57-1	Dieldrin	U	0.10	1.0	0.10	0.10	0.017
72-20-8	Endrin	σ	0.10	1.0	0.10	0.10	0.018
72-54-8	4,4'-DDD	σ	0.10	1.0	0.10	0.10	0.028
33213-65-9	Endosulfan II	ប	0.10	1.0	0.10	0.10	0.016
50-29-3	4,4'-DDT	U	0.10	1.0	0.10	0.10	0.030
7421-36-3	Endrin Aldehyde	υ	0.10	1.0	0.10	0.10	0.021
1031-07-8	Endosulfan sulfate	บ	0.10	1.0	0.10	0.10	0.023
72-43-5	Methoxychlor	ប	0.50	1.0	0.50	0.50	0.045
8001-35-2	Toxaphene	ប	1.0	1.0	1.0	1.0	0.92
5103-71-9	alpha-Chlordane	υ	0.050	1.0	0.050	0.050	0.019
5103-74-2	gamma-Chlordane	υ	0.050	1.0	0.050	0.050	0.019
53494-70-5	Endrin Ketone	ប	0.10	1.0	0.10	0.10	0.020
12789-03-6	Chlordane	ט	0.50	1.0	0.50	0.50	0.15
877-09-8	Tetrachloro-m-Xylene		77%				
2051-24-3	Decachlorobiphenyl		54%				

Page 01 of 01 8TB1210.d

FORM 2 WATER SEMIVOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: KATAHDIN ANALYTICAL SERVICES

Lab Code: KAS

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

GC Column(1): RTX-CLPI ID: 0.53 (mm)GC Column(2): RTX-CLPII ID: 0.53 (mm)

	CLIENT	LAB	may:	l mays	I Dana	Inana	l omre-		 .
	SAMPLE ID	SAMPLE ID	LTCXT	TCX2	DCR1	DCB2	OTHR		: :
	· -		i	REC#	i	i	i	(2)	OUT
0.7	WC1500 DIANE	=======================================	====	====	====	====	====	====	===
02	WG1590-BLANK	WG1590-1	75	77	52	54			0
	WG1590-LCS	WG1590-2	74	76	30*	31*			2
	S1SW-2-0103	WT0246-11	62	65	72	71	l		0
04	WG1560-BLANK	WG1560-1	69	69	80	80			
05	WG1560-LCS	WG1560-2	64	64	67	64			0
06	WG1560-LCSD	WG1560-3	78	78	66	67			0
07	S1MW-7-0103	WT0233-6	71	72	83	84			ol
08	0103-DUP-01	WT0233-7	78	79	85	88			0
09					i	i			- 1
10									
11									
12					i				
13					i				
14									
15									
16							i		
17					¦				
18									
19									
20						!			—-¦
21				¦		¦		!	
22			!			!			!
23							!		!
24			!			——- <u> </u>	!	!	!
25									!
26				— -	!	!	!		!
27					!	!	!	!	!
28			!				!	!	1
20		l							

ADVISORY QC LIMITS

S1 (TCX) = Tetrachloro-m-Xylene (30-123)

S2 (DCB) = Decachlorobiphenyl (36-140)

Column to be used to flag recovery values

* Values outside of QC limits

D Surrogate diluted out

page 1 of 1

FORM 8 FL-PRO ANALYTICAL SEQUENCE

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code:

Project: NAF KEY WEST CTO233 SDG No.: CTO233-4

GC Column: ZB-1 ID: 0.53 (mm) Init. Calib. Date(s): 01/17/03 01/17/03

Instrument ID: GC12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO		INITIAL CAL	BRATION		
	CLIENT	LAB	DATE	TIME	S1	S2
	SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	=========	========	=======	=======	======	=======
01	ICAL	FL PRO 5 UG/	01/17/03	1201	18.34	24.65
02	ICAL	FL PRO 20 UG	01/17/03	1311	18.34	24.66
03	ICAL	FL PRO 50 UG	01/17/03	1422	18.34	24.65
04	ICAL	FL PRO 100UG	01/17/03	1532	18.34	24.65
05	ICAL	FL PRO 200UG	01/17/03	1643	18.34	24.66
06	INDSOURCE	FL PRO IND	01/17/03	1753	18.34	24.65
07	CV	FLPRO 50 UG/	02/19/03	1350	18.33	24.63
80	WG1582-BLANK	WG1582-1	02/19/03	1500	18.33	24.64
09	WG1582-LCS	WG1582-2	02/19/03	1722	18.33	24.64
10	WG1582-LCSD	WG1582-3	02/19/03	1831	18.33	24.64
11	FC-MW-06-010	WT0233-1	02/19/03	1942	18.33	24.64
12	FC-MW-05-010	WT0233-3	02/19/03	2203	18.33	24.64
13	CV	FLPRO 50 UG/	02/20/03	0133	18.33	24.63
14	CV	FLPRO 50 UG/	02/20/03	1626	18.34	24.64
15	FC-MW-20R-01	WT0233-2	02/20/03	1737	18.33	24.63
16	CV	FLPRO 50 UG/	02/20/03	2107	18.32	24.63
17				į	i	i
18						
19						
20						

QC LIMITS

S1 = O-Terphenyl (+/- 0.37 MINUTES) S2 = n-Triacontane-D62 (+/- 0.49 MINUTES)

Column used to flag retention time values with an asterisk.

* Values outside of QC limits.

page 1 of 1

FORM 6 FL-PRO INITIAL CALIBRATION DATA

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code:

Project NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC12

Calibration Date(s): 01/17/03 01/17/03

Column: ZB-1 ID: 0.53 (mm) Calibration Time(s): 1201 1643

LAB FILE ID:

RF5: CTA2027

RF100: CTA2030 RF200: CTA2031

RF20: CTA2028 RF50: CTA2029

	1			1	l .	1	COEFF	PICENTS	*RSD	MAX TRSD
COMPOUND	RF5	RF20	RF50	RF100	RF200	CURVE) A0	A1	OR R^2	OR R^2
		======	=======			=====		: ======	-	-
C-8	30443	111280	287150	546300	1055300	LINR	-1.6251	2e-004	0.99940	0.99000
2-10	28265	112320	291000	551110	1070000	LINR	-1.4123	2e-004	0.99943	0.99000
2-16	29995	112160	292230	551220	1074300	LINR	-1.4416	2e-004	[0.99948	0.99000
FL-PRO peaks C8-C40	475570	1855000	4856000	9172000	2e+007	LINR	-19.110	2e-004	0.99960	0.99000
2-38	23315	99889	271200	510360	1012500	LINR	-0.5519	2.e-004	0.99962	0.99000
C-40	21542	96187	261750	500590	1003300	LINR	3e-002	2.e-004	0.99980	0.99000
C-32	27019	106780	282660	530760	1044300	LINR	-1.0800	2e-004	0.99955	0.99000
-34									-	0.99000
=======================================	======							=======	· 	
										40.000
										40.000
-12										0.99000
-14	27978	111910	289900	549780	1071000	LINR	-1.2962	2e-004	0.99950	0.99000
:-18	28594	110380	290240	548490	1071100	LINR	-1.2458	2e-004	0.99951	0.99000
:-20							-1.2883		-	10.99000
-22	28774	111630	291270	550460	1078200	LINR	-1.2129	2e-004	0.99957	10.99000
-24							-1.1401	-		0.99000
-26							-1.0918		•	0.99000
-28							-1.0495			0.99000
-30							-0.8100	•	•	0.99000
-36						•	-0.7420	:	:	0.99000
		i								

FORM VI FL-PRO

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code:

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC12 Calibration Date: 02/19/03 Time: 1350

Init. Calib. Times: 1201 1643

GC Column: ZB-1 ID: 0.53 (mm)

		RRF50.000		Ī	1		1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	ן ו
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
	=======			=====	======	! · · · · · · ·	
C-24	56.039000	50.000000	6086.6000	0.01		,	
C-8	52.292000	50.000000	5690.9000	0.01	•		
C-10	53.803000	50.000000	5911.2000	0.01			
C-12	54.779000	50.000000	6099.9000	0.01			
C-14	55.244000	50.000000	6057.7000	0.01	,		
C-16	55.688000	50.000000	6134.8000	0.01		:	
C-18	55.720000	50.000000	6102.9000	0.01	!		•
C-28	55.448000	50.000000	6013 3000	0.01			
C-20	55.961000	50.000000	6123 3000	0.01			
C-22	55.640000	50.000000	6128 5000	0.01			
C-26	55.778000	50.000000	6105 9000	0.01			
C-30	55.988000	50.000000	6054 3000	0.01	11.56		
C-36	51 - 590000	50.000000	E499 8000		11.98		
FL-PRO peaks C8-C40	919 75000	850.00000	5954 0000		3.18		
	47 220000	50.000000	4042 2000	0.01	,		
C-40	51 586000	50.000000	4842.3000	0.01	-5.56		
C-32	54.334000	50.000000	5181.3000	0.01	3.17		LINR
C-34	52.747000	50.000000	5774.3000	0.01	1	20.00	LINR
		50.000000		:	5.49	20.00	LINR
:	=======	======================================	=======	====	======	========	====
	4570 0000	7355.4000	7355.4000		6.51	25.00	AVRG
- 12233Medile Doz	#2/8.0000	4827.4000	4827.4000	0.01	5.45	25.00	
			ł	ſ	j	i	

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code:

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC12 Calibration Date: 02/20/03 Time: 0133

Init. Calib. Times: 1201 1643

GC Column: ZB-1 ID: 0.53 (mm)

**	<u> </u>	RRF50.000	ł		1		T
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	l cups
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
	=======		=======	=====	======	=======	====
C-24	44.351000	50.000000	4842.4000	0.01	-11.30	20.00	
C-8	41.642000	50.000000	4566.8000	0.01	-16.72		
C-10	42.868000	50.000000	4740.5000	0.01	:		
C-12	44.205000	50.000000	4966.4000	0.01		:	
C-14	44.048000	50.000000	4858.2000	0.01	•		
C-16	44.180000	50.000000	4899.0000	0.01	-11.64		
C-18	44.248000	50.000000	4873.8000	0.01	-11.50		
C-28	44.570000	50.000000	4855.5000	0.01	-10.86		
C-20	44.345000	50.000000	4880.9000	0.01	-11.31		
C-22	44.172000	50.000000	4892,4000	0.01	-11.66		
C-26	44.484000	50.000000	4893.3000	0.01	-11.03		
C-30	44.965000	50.000000	4879.3000	0.01	-10.07		
C-36	44.436000	50.000000	4747 1000	0.01	-11.13		
FL-PRO peaks C8-C40	751.83000	850.00000	4803 0000	0.01	-11.55	20.00	
C-38	44.796000	50.000000	4596 6000	0.01	-10.41	20.00	
C-40	46.311000	50.000000	4651 2000	0.01	(20.00	•
C-32	44.277000	50.000000	4735 9000	0.01	-7.38		
C-34	43.930000	50.000000	4733.6000	:	-11.45	20.00	
	=======	========	4//2.6000	0.01	-12.14	20.00	LINR
)-Terphenyl	1	5882.6000	========	=====	•	=======	====
n-Triacontane-D62	4578 0000	3901.8000	3001 0000	0.01	-14.82	25.00	
	10.0000	2201.8000	2201.8000	0.01	-14.77	25.00	AVRG

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code:

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC12 Calibration Date: 02/20/03 Time: 1626

Lab File ID: CTB2048 Init. Calib. Date(s): 01/17/03 01/17/03

Init. Calib. Times: 1201 1643

GC Column: ZB-1 ID: 0.53 (mm)

		RRF50.000		1			1
COMPOUND	RRF or	or	CCAL	MIN	%D or	MAX %D or	CITEU
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYPE
		=======	=======	=====	i	:	====
C-24		50.000000			4.22		1
C-8	52.143000	50.000000	5675.2000	0.01	•		
C-10	51.326000	50.000000	5645.9000	0.01	:		
C-12	51.647000	50.000000	5764.1000	0.01		•	•
C-14	51.716000	50.000000	5679.7000	0.01	:		
C-16	51.569000	50.000000	5692.5000	0.01	•	!	
C-18	51.720000	50.000000	5674.3000	0.01	•		
C-28	52.427000	50.000000	5691.7000	0.01		•	
C-20	_ 51.847000	50.000000	5683.3000	0.01			:
C-22	51.982000	50.000000	5734.1000	0.01	•		!
C-26	_ 52.246000	50.000000	5726.6000	0.01			
C-30	_ 53.041000	50.000000	5740.1000	0.01			
C-36	_ 50.679000	50.000000	5403.1000	0.01		(
FL-PRO peaks C8-C40	_ 876.80000	850.00000	5584.3000	0.01			
C-38	49.992000	50.000000	5123.2000	0.01	(
C-40	48.343000	50.000000	4855.3000	0.01	-3.31	•	
C-32	52.261000	50.000000	5569.4000	0.01	4.52		•
C-34	51.754000	50.000000	5606 0000	0.01	3.51		
~=====================================	= ======	=======	*======	=====	======	20.00	- 1
O-Terphenyl	6905.8000	5907.1000	5907-1000	0.01	-14.46		====
n-Triacontane-D62	4578.0000	4341.0000	4341 0000	0.01	-5.18	25.00	
	_i	. =		0.01	-2.10	25.00	AVRG

Lab Name: KATAHDIN ANALYTICAL SERVICES Lab Code:

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

Instrument ID: GC12 Calibration Date: 02/20/03 Time: 2107

Init. Calib. Times: 1201 1643

GC Column: ZB-1 ID: 0.53 (mm)

70	<u> </u>	RRF50.000			1		Т
COMPOUND	RRF or	or	CCAL	NIM	%D or	MAX %D or	CUR
	AMOUNT	AMOUNT	RRF50.000	RRF	%DRIFT	%DRIFT	TYP
	= ========				i		:
C-24	53.165000	50.000000	5780.6000	0.01	6.33	20.00	•
C-8	_ 53.146000	50.000000	5781.1000	0.01	•		
C-10	52.423000	50.000000	5763.5000	0.01	:		
C-12	_ 52.861000	50.000000	5894.2000	0.01	•		
C-14	_ 53.159000	50.000000	5834.4000	0.01	!		
C-16	_ 52.987000	50.000000	5844.8000	0.01	!		
C-18	_ 53.158000	50.000000	5828.5000	0.01	,,	!	
C-28	_ 53.373000	50.000000	5792.4000	0.01			
C-20	53.092000	50.000000	5816.5000	0.01			7
C-22	52.999000	50.000000	5843.8000	0.01			•
C-26	53.273000	50.000000	5837.0000	0.01		!	!
C-30	53.857000	50.000000	5827.0000	0.01	,		
C-36	51.609000	50.000000	5500 8000	0.01	–		
FL-PRO peaks C8-C40	895.80000	850.00000	5702 5000	0.01	!		
C-38	51.620000	50.000000	5288 2000	0.01			
C-40	49.957000	50.000000	5017 5000	0.01			
C-32	52 822000	50.000000	5629 0000				
C-34	52 295000	50.000000	5628.0000	0.01			
	_ 32:233000	i			4.59	20.00	LINR
)-Terphenyl	•	6073.0000		=====	======	J	====
n-Triacontane-D62	14579 0000	4400 3000	6073.0000	:	-12.06	25.00	AVRG
	1 = 2 / 0 . 0 0 0 0	4408.3000	4408.3000	0.01	-3.71	25.00	AVRG
	-1						

KATAHDIN ANALYTICAL SERVICES

Report of Analytical Results

Client:

Project: NAF KEY WEST CT0233

PO No:

Sample Date: 02/05/03 Received Date: 02/05/03 Extraction Date: 02/06/03 Analysis Date: 02/19/03

Report Date: 02/21/2003 Matrix: WATER

% Solids: NA

Lab ID: WG1582-1

Client ID: WG1582-Blank

SDG: CTO233-4 Extracted by: AB

Extraction Method: SW846 3510

Analyst: SAW

Analysis Method: SW846 M8100

Lab Prep Batch: WG1582

Units: ug/L

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
	Petroleum Range Organics	U	500	1.0	500	500	280
	n-Triacontane-D62		104%				
	O-Terphenyl		888				

Page 01 of 01 CTB2035.d

FORM 2 WATER FL-PRO SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: KATAHDIN ANALYTICAL SERVICES

Lab Code:

Project: NAF KEY WEST CTO233

SDG No.: CTO233-4

	CLIENT	L TAD	1	1 00	1					,	 .
	SAMPLE ID	LAB	S1	S2	S3	S4	S5	S6	S7	S8	TOT
		SAMPLE ID	#	:	#	#	#	#	#	#	OUT
0.1	=====================================	======================================	į	ļ	====		====	====	====	====	===
	WG1582-LCS	WG1582-1	104	88	!	 					0
03		WG1582-2	106	87	ļ	ļ					0
	WG1582-LCSD	WG1582-3	101	83	ļ	ļ					0
	FC-MW-06-0103	WT0233-1	122	98	!	ļ					0
	FC-MW-05-0103	WT0233-3	125	104	ļ <i>-</i>						0
06 07	FC-MW-20R-0103	WT0233-2	142	112							0
!			_								1
80											1
09											
10		·									
	 -		_	<u> </u>			!				
12			_								
13								!			
14 15						!]				
			_								
16			_	!	!	!	!				
17			_ :	!		!	!				
18 19			_ !	·!	!	!					1
			_	!	!	!					
20			_		!						
21			_!!	!	!						
22			_	!	!						1
23			_		[1
24			_	[i	
25			_!					1		1	
26			_[[1		[i
27			_					1			i
28			_	1							

QC LIMITS (42-193)

= n-Triacontane-D62 S2 (OTP) = O-Terphenyl (82-142)

Column to be used to flag recovery values

D Surrogate diluted out

page 1 of 1

FORM II SV-1

^{*} Values outside of contract required QC limits

KATAHDIN ANALYTICAL SERVICES LAB CONTROL SAMPLE

Client:

Project: NAF KEY WEST CT0233

PO No:

Sample Date: 02/05/03
Received Date: 02/05/03
Extraction Date: 02/06/03
Analysis Date: 02/19/03
Report Date: 02/21/2003

Matrix: WATER

Lab ID: WG1582-2 & WG1582-3

Client ID: WG1582-LCSD & WG1582-LCSD

SDG: CTO233-4 Extracted by: AB

Extraction Method: SW846 3510

Analyst: SAW

Analysis Method: SW846 M8100

Lab Prep Batch: WG1582

Units: ug/L

	LCS	LCSD	SAMPLE	LCS	LCSD	LCS	LCSD		%RPD	QC.
COMPOUND	SPIKE	SPIKE	CONC.	CONC.	CONC.	%REC.	%REC.	%RPD	LIMIT	LIMITS
Petroleum Range Organics	1700	1700	NA	1600	1500	94	88	6	30	55-118

APPENDIX B WATER SAMPLING LOGS

GROUNDWATER SAMPLE LOG SHEET

Page_

of.

Project Site I Project No.: [] Domest [] Monitor [] Other V [] QA San	4 MES 4087	-FW1	NE CLUB	Sample ID No.: FC-MU-35- Sample Location: FC-MW 20 Sampled By: C.O.C. No.: Type of Sample: P Low Concentration I] High Concentration						
SAMPLING DATA		- Elitoropii (Ne. s			te november			ALCOHOLOGICA DE LA CONTRACTOR DE LA CONT	On the same	ł
Date:	31 62	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	Other	1
Time:	10/19	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU)	(mg/l)	(%)	00101	l .
Method: Re	ristalle	clien	7.34	-554	25.2	136	0.24	6-02		1
PURGE DATA:		vivi noese]
Date:	31 02	Volume	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other) TW	Tim
Method: Perm	rlate	Qu.	au o	me ca	ing vole	-e pie	or to tal	in red	-	1
Monitor Reading (p	opm):	1000 ml	9.45	1557	25.0	134	0.56	0.02	4.75	9:40
Well Casing Diamo	eter & Material	1000ml	7.40	.556	25.3	120	0.73	0.02	4.75	9:50
Type: 2"	PVC	wood	7.36	.555	25.4	136	0.15	0.02	1.5	9:55
Total Well Depth (TD): 11.62	wood	7.41	.554	25.4	54	0.04	0.02		10:00
Static Water Level		10000	7.42	1554	25.3	128	0.14	0.02		10:0
One Casing Volum		1000	7.34	1554	25.2	1:36	0.24	0.02		10:10
Start Purge (hrs):	9:35		il.							
End Purge (hrs):	10:10									1
Total Purge Time										1
Total Vol. Purged	the same of the sa		i		de suu conservation		l-comme			1
SAMPLE COLLE		TION:							Walter Brown	1
	nalysis		Preservative C			Container Re		Collected	1	
	AH			-			aber			1
TRPH		H		a. I deter enter					Į.	
VOC			Ce		3/400					
EDB			(Cl		2/40 ml wal				4	
LEAD		HV03			1/1251	ul poly			ł	
				-			- 4			ł
										i
					l.				trace material	
ALCOHOLD HERMAN							-4711/2 (777-217	05-59-6		
OBSERVATIONS	/ NOTES:									
										1
Circle if Applicab	le:	Stell College	PERMIT	13.753		Signature(s)		200		
MS/MSD	Duplicate ID No.:					Rear	with	lape	Tu	
						~1. J	1	- X		1

GROUNDWATER SAMPLE LOG SHEET

Page___ of ___

Monito [] Other I [] QA Sa	stic Well Data ring Well Data Well Type: mple Type:	NAF	4085 4085	lest-l	Formalia	Sample Sample C.O.C. Type of	d By:	FC - UW	-06-0103			
SAMPLING DAT												
	131 02	Color	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other			
Time: Method: Cen	Bilis	(Visual)	(S.U.)	(mS/cm)	(°C)	(NTU) 5 33	(mg/l) 2-2°5	0.02				
PURGE DATA:	Mallie	any	4.51	401	23.6	7 05	0.00 D	0.00				
	1211-2	Volume	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other Dit	Time		
Date: 1 Method: Peris	31/02	Volume	pri	540	A 7		voline i	nitially) 4.09	lue		
Property and the second	2011/2012/2011	1	7.26	.501	23.1	carre	2.10	7	,	8:10		
Monitor Reading		101257				916		0.02	4.03	8:15		
Well Casing Dian		1000 mg	7.51	.494	23.4		2.06	0.02	4.03	2.2		
Type: PVC	2"	10001				788	2.03	0.02		8:20		
Total Well Depth		1000	7.60	.490		492	2.24	0.02		8 25		
	el (WL): 3 . 70	1000	7.65	.498		458	3.17	0.02		8:30		
One Casing Volu	me(gal/L): 5·4	1070	7.57	.490	23.6	490	2.15	0.02		8.35		
Start Purge (hrs):		1000	7.57	499	23.6	533	8-38	0.02		8:45		
End Purge (hrs):	8:45											
Total Purge Time	(min): 50 W							Artific Commence				
Total Vol. Purged	(gaVL): 212L											
SAMPLE COLLE	ECTION INFORMA	TION:					Victoria de la compansión de la compansi		A 10 A 19			
	Analysis	- SA 1 1997	Preserv	vative			equirements		Collected			
	PAH		-			2/ lit		~				
	TRPH		HCl			ئىلىلھ		V				
VOA		Hee			3/400		~					
GAS		HNO3			2/1/25		~					
	EDB	- 11 12 13 13	+10	1		3)40h	4					
OBSERVATION	S / NOTES:				ANS GAL			STABILITY (SEX)	freeholder.			
									T T			
Circle if Applica	ble:	(1) j 110 / 18				Signature(s);	· ·				
MS/MSD Duplicate ID No.:						Gary Fragange						

GROUNDWATER SAMPLE LOG SHEET

Page___ of _

Project Site Project No.: [] Domes Monito [] Other	•	ay Wes	t Fizu	Chilo	Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: Low Concentration [] High Concentration						
SAMPLING DAT	A:	RESIDENCE OF THE						Links - July		1	
Date: 1 31	63	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other	1	
Time: 08		(Visual)	(S.U.)	(mS/cm)	(⁰ C)	(NTU)	(mg/l)	(%)		1	
Method: Dani	studic	Jordy	7.29	0.358	24.9	19	0.63	0.01		1	
PURGE DATA:							No.			4	
Date: [31]		Volume	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other	-	
Method: peu's	stadic	0.5 gal	7.20	0.31	29.1	31	0.53	0.01	douly	08	
Monitor Reading	(ppm):	1.00	7.28	0.428	25.1	42	0.19	001	1	08	
Well Casing Dian	neter & Material	1.590	7.30	0.395	25.0	90	0.12	0.01		08	
Type: 24	PVC	2.0	224	0379	25.0	233	0.29	0.01		062	
Total Well Depth	(TD): 14-67	25	7.17	0.367	24.9	113	0.19	0.01		082	
Static Water Lev		3,5	7.28	0.363		112	0,05	0.01		083	
One Casing Volu		40	7.27	0359	24.9	83	0.05	0.01		080	
Start Purge (hrs)		4.5		0.359		82	0.03	0.01		08	
End Purge (hrs):		4.8		0.358	24.9	79	0-03	0-01		085	
Total Purge Time			, , ,			1-1-1		-			
Total Vol. Purged		this woo	ld me	too	lown -	Statisley	tel then	Samp	Red	1	
	ECTION INFORMA			0		The said		1	Elista Maria	9	
Analysis			Preser			Container R	Collected	1			
TRPH			He	1	20	14 Amb]			
PAHS	,						ser			1	
PPL VOCS		1/21			c 40mL		4				
De .					40mL		4				
Lead		[7]	U03	(×	125 1		4				
			-							1	
										1	
		17 1117 12	3 1 1 1				- 1 J			1	
]	
OBSERVATION				No. of Street				1.00		4	
Casing.	fally subme d 1 vdune 17'x 1/4"tu	red -	puzeo	l uveti e state	i mea	in level	stable ests	2 ~ 4.6	53'		
-priga	17'x 1/4" tu	loing - 0	. 04	yet.	321	sung voi	1= 0.1	13 sal			
Circle if Applica	ble:					Signature(s				1	
MS/MSD	Duplicate ID No.:						& Mika				